PocHunter: A New Pocket Clustering Scheme

We propose a new pocket searching scheme, named as PocHunter, which can easily find the ATP-binding pocket(s) based on the set (S) of the predicted ATP-binding residues. The PocHunter scheme uses two sub-algorithms to cluster the binding residues: (a) PocHunter can firstly employ a SRH (special residues hunter) to search the special residue set, denoted as **R**, where the distance between any two special residues is consistently greater than the distance threshold, $T_{Cluster}$. (b) The clustering scheme then divides the predicted ATP-binding residues into |**R**| clusters based on a simply assignment algorithm, named as ASSIGN.

The process of the proposed SRH is described as follows:

Step I: Searching the maximum distance (d_{max}) between any two residues in **S**, and the corresponding two residues, which are denoted as r_i and r_j . If d_{max} is greater than $T_{Cluster}$, the two special residue r_i and r_j will be put into the special residue set **R**, and then go to Step II. Otherwise, only r_i is put in **R** and the SRH program will terminate.

Step II: Firstly, searching all the other special residues $\{r_k\}$ in **S**, where the distance between each r_k and each residue in **R** is always larger than $T_{Cluster}$. We then select the best residue r_k from $\{r_k\}$ which can achieve the maximum average distance against all residues in **R**. Lastly, we update the special residue set **R**, i.e., putting the selected r_k to **R**. Notice that if there is no other new special residues can be put in **R**, SRH program will terminate.

Step III: Repeating Step II until no other special residue could be selected to update \mathbf{R} .

Algorithm 1 summarizes the special residues hunter (SRH). In this study, the clustering threshold $T_{Cluster}$ is set to 39.4Å, which is calculated based on the average ATP-binding pocket diameter.

The process of the ASSIGN is described as follows:

In order to conveniently describe the ASSIGN algorithm, we denote the special residue set \mathbf{R} as follows:

$$\mathbf{R} = \{r_1^s, r_2^s, \cdots, r_{|\mathbf{R}|}^s\}$$
(1)

where r_i^s represents the *i*-th special residue. Then, ASSIGN will divide the residues in **S** into $|\mathbf{R}|$ clusters as follows:

For each residue r in S, ASSIGN will search the best special residue from R, which closest to the residue r. Supposing r_i^s is the best special residue, the residue r

will be then assigned to the *i*-th cluster (or pocket). ASSIGN will terminate until all residues in **S** are assigned.

Algorithm 1	Special Residues Hunter (SRH)
Input	S: the set of predicted ATP-binding residues;
	$T_{Cluster}$: the threshold parameter for hunting.
Output	R: a set of the special residues, different residue belongs to different pockets.
1	Searching the maximum distance (d_{max}) between any two residues in S, and the two corresponding residues $(r_i \text{ and } r_j)$.
2	$\mathbf{R} \leftarrow \{r_i\}$
3	IF $d_{max} > T_{Cluster}$
4	$\mathbf{R} \leftarrow \mathbf{R} \cup \{ r_j \}$
5	WHILE TRUE
6	$d_{ave} \leftarrow 0, r_k \leftarrow r_i$
7	FOR each residue r_x in S
8	$\mathbf{D} \leftarrow \varnothing$
9	FOR each residue r_y in R
10	Calculate the distance (d) between r_x and r_y .
11	IF $d < T_{Cluster}$
12	Break
13	END IF
14	$\mathbf{D} \leftarrow \mathbf{D} \cup \{d\}$
15	END FOR
16	IF $ \mathbf{D} = \mathbf{R} $ and $average(\mathbf{D}) > d_{ave}$
17	$d_{ave} \leftarrow average(\mathbf{D}) \text{ and } r_k \leftarrow r_x$
18	ELSE
19	break
20	END IF
21	END FOR
22	IF $d_{ave} \neq 0$
23	$\mathbf{R} \leftarrow \mathbf{R} \cup \{r_k\}$
24	ELSE
25	break
26	END IF
27	END WHILE
28	END IF
29	RETURN R