[Home] [Server] [Queue] [About] [Remove] [Statistics]

I-TASSER results for job id S777780

(Click on S777780_results.tar.bz2 to download the tarball file including all modeling results listed on this page. Click on Annotation of I-TASSER Output to read the instructions for how to interpret the results on this page. Model results are kept on the server for 60 days, there is no way to retrieve the modeling data older than 2 months)

  Submitted Sequence in FASTA format

>protein
MSFSGSTAGSGSRTSQTSFEFGRTHVVWPKGKHEATIVWLHGLGDKGSSWSQLFESLPLP
NVKWICPTAPTRPVAAFGGFPCTAWFDVGDISEDAPDDLEGLDFSAAHVANLLSTEPADV
KLCVGGFSMGAAAALYSATCHAFKQYGNGSPYPLNLSAVVGLSGWLPCSRTLRNRMQGMN
DAGRRAASLPILLCHGTGDDVVAYQHGEKSARILSSSGFQNLTFRNYQGLGHYTIPEETD
EVCCWLAANLSLGGT

  Predicted Secondary Structure

Sequence                  20                  40                  60                  80                 100                 120                 140                 160                 180                 200                 220                 240
                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               
MSFSGSTAGSGSRTSQTSFEFGRTHVVWPKGKHEATIVWLHGLGDKGSSWSQLFESLPLPNVKWICPTAPTRPVAAFGGFPCTAWFDVGDISEDAPDDLEGLDFSAAHVANLLSTEPADVKLCVGGFSMGAAAALYSATCHAFKQYGNGSPYPLNLSAVVGLSGWLPCSRTLRNRMQGMNDAGRRAASLPILLCHGTGDDVVAYQHGEKSARILSSSGFQNLTFRNYQGLGHYTIPEETDEVCCWLAANLSLGGT
PredictionCCCCCCCCCCCCCCCCCCCCCCCCSSSCCCCCCCCSSSSSCCCCCCCCCHHHHHHHCCCCCCSSSSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCSSSSSSCHHHHHHHHHHHHCCHHHHHHCCCCCCCCHHHHHHCCCCCCCHHHHHHHCCCCCCCHHCCCCCSSSSSCCCCCCCCHHHHHHHHHHHHHCCCCCSSSSSCCCCCCCCCHHHHHHHHHHHHHHCCCCCC
Conf.Score976777666677788886547998588989988728999799998844889999863576766995899767755567886643246778898858899999999999999998511005468998471899999999853214431024676342346310365332113333321322110011468467773589994898999999999985699976998619999988999999999999997688799
H:Helix; S:Strand; C:Coil

  Predicted Solvent Accessibility

Sequence                  20                  40                  60                  80                 100                 120                 140                 160                 180                 200                 220                 240
                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               
MSFSGSTAGSGSRTSQTSFEFGRTHVVWPKGKHEATIVWLHGLGDKGSSWSQLFESLPLPNVKWICPTAPTRPVAAFGGFPCTAWFDVGDISEDAPDDLEGLDFSAAHVANLLSTEPADVKLCVGGFSMGAAAALYSATCHAFKQYGNGSPYPLNLSAVVGLSGWLPCSRTLRNRMQGMNDAGRRAASLPILLCHGTGDDVVAYQHGEKSARILSSSGFQNLTFRNYQGLGHYTIPEETDEVCCWLAANLSLGGT
Prediction643444443344444544172342120306341300000000201316202400540416302000020342212233223010001033144736403500440151034006412452300000000000000100012333334433423320000000001001353046315635444442321200000033033012410430151047261650322204613432135004202400473174768
Values range from 0 (buried residue) to 9 (highly exposed residue)

   Predicted normalized B-factor

(B-factor is a value to indicate the extent of the inherent thermal mobility of residues/atoms in proteins. In I-TASSER, this value is deduced from threading template proteins from the PDB in combination with the sequence profiles derived from sequence databases. The reported B-factor profile in the figure below corresponds to the normalized B-factor of the target protein, defined by B=(B'-u)/s, where B' is the raw B-factor value, u and s are respectively the mean and standard deviation of the raw B-factors along the sequence. Click here to read more about predicted normalized B-factor)


  Top 10 threading templates used by I-TASSER

(I-TASSER modeling starts from the structure templates identified by LOMETS from the PDB library. LOMETS is a meta-server threading approach containing multiple threading programs, where each threading program can generate tens of thousands of template alignments. I-TASSER only uses the templates of the highest significance in the threading alignments, the significance of which are measured by the Z-score, i.e. the difference between the raw and average scores in the unit of standard deviation. The templates in this section are the 10 best templates selected from the LOMETS threading programs. Usually, one template of the highest Z-score is selected from each threading program, where the threading programs are sorted by the average performance in the large-scale benchmark test experiments.)

Rank PDB
Hit
Iden1Iden2CovNorm.
Z-score
Download
Align.
                   20                  40                  60                  80                 100                 120                 140                 160                 180                 200                 220                 240
                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               
Sec.Str
Seq
CCCCCCCCCCCCCCCCCCCCCCCCSSSCCCCCCCCSSSSSCCCCCCCCCHHHHHHHCCCCCCSSSSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCSSSSSSCHHHHHHHHHHHHCCHHHHHHCCCCCCCCHHHHHHCCCCCCCHHHHHHHCCCCCCCHHCCCCCSSSSSCCCCCCCCHHHHHHHHHHHHHCCCCCSSSSSCCCCCCCCCHHHHHHHHHHHHHHCCCCCC
MSFSGSTAGSGSRTSQTSFEFGRTHVVWPKGKHEATIVWLHGLGDKGSSWSQLFESLPLPNVKWICPTAPTRPVAAFGGFPCTAWFDVGDISEDAPDDLEGLDFSAAHVANLLSTEPADVKLCVGGFSMGAAAALYSATCHAFKQYGNGSPYPLNLSAVVGLSGWLPCSRTLRNRMQGMNDAGRRAASLPILLCHGTGDDVVAYQHGEKSARILSSSGFQNLTFRNYQGLGHYTIPEETDEVCCWLAANLSLGGT
16avyA 0.72 0.65 0.91 3.33Download -------------------EYGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
27ozmA 0.18 0.28 0.83 1.19Download ----------TTTRTERNFAGIVYDVWTPDTAPQAVVVLAHGLGEHARRYDHVAQRLGAAGLVTYALDHRGHGRSGGARVLV--------------RDISEYTADFDTLVGIATREYPGCKRIVLGHSMGGGIVFAYGVER-----------PDNYDLMVLSAPAVAAQDLVSPVVAVAVVVPGPALTAPLLVLHGTDDRLIPIEGSRRLVECV---GSADVQLKEYPGLYHEVRNQVLDDVVAWLTERL-----
36avy 0.71 0.65 0.91 0.79Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
46avy 0.71 0.65 0.91 0.75Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
56avyA 0.71 0.65 0.91 2.94Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
66avy 0.67 0.65 0.86 0.84Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHNLSLAVGLSGWLP-----------CARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
76avyA 0.71 0.65 0.91 4.39Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
86avyA 0.71 0.65 0.91 2.52Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
97y0lA 0.10 0.23 0.99 1.40Download KRVTGPGKFDPSKPVIPYSNEGATFYINQVRPRGLPLVFWHGGGLTGHIWESQTLFVQDRHTVYTIGRGNIPTFNGPFGQLEEESIVNTVTGNSSKEGAWVRISSDEIVDAVVKLVTHIGPCVLVTHAASGVLGMRVATHAKNVRGIVAYEPATSIGKVPEIPPLADKKSQIFPPFEIQESYFKKLAKIPIQFVFGDNIPKNPRYAHSLSLEAINKLGG-QASLLDLRGNTHRNNVQVASLLSDFLGKH-GLDQN
106avyA 0.71 0.65 0.91 4.16Download --------------------YGRTHVVRPKGTHKATIVWLHGLGDNGTSWSQLLETLPLPNIKWICPTAPSRPVSLFGGFPCTAWFDVADLSEDAPDDTEGMDASAAHVANLLSTEPADIKLGVGGFSMGAATALYSATCFAHGKYGNGNPYPVNLSLAVGLSGWLPCARTLKNRIEASPEAAQRASTIPLLLCHGKADDVVLYKHGQRSTDALKANGFSNVLFKSYNSLGHYTVPEEMDEVCKWLTANLG----
(a)All the residues are colored in black; however, those residues in template which are identical to the residue in the query sequence are highlighted in color. Coloring scheme is based on the property of amino acids, where polar are brightly coloured while non-polar residues are colored in dark shade. (more about the colors used)
(b)Rank of templates represents the top ten threading templates used by I-TASSER.
(c)Ident1 is the percentage sequence identity of the templates in the threading aligned region with the query sequence.
(d)Ident2 is the percentage sequence identity of the whole template chains with query sequence.
(e)Cov represents the coverage of the threading alignment and is equal to the number of aligned residues divided by the length of query protein.
(f)Norm. Z-score is the normalized Z-score of the threading alignments. Alignment with a Normalized Z-score >1 mean a good alignment and vice versa.
(g)Download Align. provides the 3D structure of the aligned regions of the threading templates.
(h)The top 10 alignments reported above (in order of their ranking) are from the following threading programs:
       1: FFAS-3D   2: SPARKS-X   3: HHSEARCH2   4: HHSEARCH I   5: Neff-PPAS   6: HHSEARCH   7: pGenTHREADER   8: wdPPAS   9: PROSPECT2   10: SP3   

   Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of a higher value signifies a model with a higher confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated; this is usually an indication that the models have a good quality because of the converged simulations.)
    (By right-click on the images, you can export image file or change the configurations, e.g. modifying the background color or stopping the spin of your models)
  • Download Model 1
  • C-score=-0.28 (Read more about C-score)
  • Estimated TM-score = 0.68±0.12
  • Estimated RMSD = 6.4±3.9Å

  • Download Model 2
  • C-score = -1.41

  • Download Model 3
  • C-score = -0.75

  • Download Model 4
  • C-score = -3.23

  • Download Model 5
  • C-score = -1.59


  Proteins structurally close to the target in the PDB (as identified by TM-align)

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


Top 10 Identified stuctural analogs in PDB

Click
to view
RankPDB HitTM-scoreRMSDaIDENaCovAlignment
16avyA0.902 0.370.7140.906Download
21fj2A0.821 1.740.2990.878Download
35synA0.808 1.630.3350.855Download
43u0vA0.778 1.820.2820.835Download
53cn7A0.771 1.540.2930.816Download
61auoA0.769 1.850.2970.831Download
76avvA0.732 1.830.2890.788Download
84fhzA0.725 2.580.2460.816Download
95dwdA0.720 2.330.2430.808Download
104f21A0.714 2.280.2480.792Download

(a)Query structure is shown in cartoon, while the structural analog is displayed using backbone trace.
(b)Ranking of proteins is based on TM-score of the structural alignment between the query structure and known structures in the PDB library.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by length of the query protein.


  Predicted function using COFACTOR and COACH

(This section reports biological annotations of the target protein by COFACTOR and COACH based on the I-TASSER structure prediction. While COFACTOR deduces protein functions (ligand-binding sites, EC and GO) using structure comparison and protein-protein networks, COACH is a meta-server approach that combines multiple function annotation results (on ligand-binding sites) from the COFACTOR, TM-SITE and S-SITE programs.)

  Ligand binding sites


Click
to view
RankC-scoreCluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.29 73 5ct6A BM0 Rep, Mult 42,43,44,45,49,127,128,232,233
20.28 51 3f98A NTJ Rep, Mult 42,43,127,128,129,165,199,232,233
30.16 21 1aurB PMS Rep, Mult 43,76,88,128,129,201,202,232
40.02 6 1wb6A VXX Rep, Mult 128,132,164,165,167,203,206,232
50.01 2 1VZ3A 1VZ3A01 Rep, Mult 1,9,10,11,13,107,111


Download the residue-specific ligand binding probability, which is estimated by SVM.
Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites


Click
to view
RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.5503cn7A0.771 1.540.2930.816 3.1.1.1  43,128,199,232
20.5341auoA0.769 1.850.2970.831 3.1.1.1  43,128,199,232
30.4821fj2A0.821 1.740.2990.878 3.1.4.39  43,45,165
40.4101i6wB0.553 3.260.1390.663 3.1.1.3  128,129,199,232
50.3672h1iA0.670 2.770.1700.776 3.1.1.1  53,128

 Click on the radio buttons to visualize predicted active site residues.
(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms
Top 10 homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
1 0.480.7709 1.54 0.29 0.823cn7A GO:0016787
2 0.450.7690 1.85 0.30 0.831auoA GO:0004091 GO:0080032 GO:0016787 GO:0080031 GO:0080030
3 0.450.8207 1.74 0.30 0.881fj2A GO:0046209 GO:0006631 GO:0050999 GO:0005737 GO:0008474 GO:0004622 GO:0005829 GO:0006629 GO:0016787 GO:0005739
4 0.450.6936 2.78 0.16 0.802h1iA GO:0046872 GO:0080032 GO:0080030 GO:0080031 GO:0004091 GO:0016787
5 0.400.6613 3.03 0.16 0.781ycdB GO:0005737 GO:0008150 GO:0016787 GO:0004091 GO:0005634
6 0.400.6853 3.58 0.19 0.843s8yA GO:0016023 GO:0004064 GO:0018738 GO:0004091
7 0.370.6598 2.69 0.17 0.772r8bA GO:0016787
8 0.370.6764 2.52 0.18 0.783og9A GO:0016787
9 0.340.6216 3.38 0.16 0.782o2gA GO:0016787
10 0.330.6357 3.44 0.15 0.772fukA GO:0004177 GO:0006508


Consensus prediction of GO terms
 
Molecular Function GO:0004091 GO:0080032 GO:0080030 GO:0080031 GO:0004622 GO:0008474 GO:0046872
GO-Score 0.82 0.70 0.70 0.70 0.45 0.45 0.45
Biological Process GO:0050999 GO:0046209 GO:0006631
GO-Score 0.45 0.45 0.45
Cellular Component GO:0005739 GO:0005829 GO:0005634
GO-Score 0.45 0.45 0.40

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.


[Click on S777780_results.tar.bz2 to download the tarball file including all modeling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
  • Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1: 100014 (2021).
  • Chengxin Zhang, Peter L. Freddolino, and Yang Zhang. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45: W291-299 (2017).
  • Jianyi Yang, Yang Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.