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ABSTRACT

Motivation: Pair-wise residue-residue contacts in proteins can be

predicted from both threading templates and sequence-based

machine learning. However, most structure modeling approaches

only use the template-based contact predictions in guiding the

simulations; this is partly because the sequence-based contact

predictions are usually considered to be less accurate than that by

threading. With the rapid progress in sequence databases and

machine-learning techniques, it is necessary to have a detailed and

comprehensive assessment of the contact-prediction methods in

different template conditions.

Results: We develop two methods for protein-contact predictions:

SVM-SEQ is a sequence-based machine learning approach which

trains a variety of sequence-derived features on contact maps;

SVM-LOMETS collects consensus contact predictions from multiple

threading templates. We test both methods on the same set of

554 proteins which are categorized into ‘Easy’, ‘Medium’, ‘Hard’ and

‘Very Hard’ targets based on the evolutionary and structural distance

between templates and targets. For the Easy and Medium targets,

SVM-LOMETS obviously outperforms SVM-SEQ; but for the Hard

and Very Hard targets, the accuracy of the SVM-SEQ predictions is

higher than that of SVM-LOMETS by 12–25%. If we combine the

SVM-SEQ and SVM-LOMETS predictions together, the total number

of correctly predicted contacts in the Hard proteins will increase by

more than 60% (or 70% for the long-range contact with a sequence

separation �24), compared with SVM-LOMETS alone. The advan-

tage of SVM-SEQ is also shown in the CASP7 free modeling targets

where the SVM-SEQ is around four times more accurate than SVM-

LOMETS in the long-range contact prediction. These data demon-

strate that the state-of-the-art sequence-based contact prediction

has reached a level which may be helpful in assisting tertiary

structure modeling for the targets which do not have close structure

templates. The maximum yield should be obtained by the combina-

tion of both sequence- and template-based predictions.

Contact: yzhang@ku.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Ab initio protein structure predictions by folding simulations

almost always fail for the medium/large size proteins approxi-

mately4120–150 residues (Aloy et al., 2003; Jauch et al., 2007;

Vincent et al., 2005; Zhang, 2008). The major reasons include

(1) the conformational phase space is too large for the limited

computing power to search for and (2) the energy function is

not accurate enough to guarantee the minimum at the native

state. The pair-wise residue contact information can be used to

constrain the simulation search within a smaller phase space

which can also improve the minimum of the landscape funnel

of the overall energy function (Skolnick et al., 1997). It is

suggested that just one real contact in every eight residues will

be enough to guide the simulations to generate correct folds

for the single-domain proteins with up to 200 residues long

(Li et al., 2004). In reality, the predicted contacts usually

include some level of false positive data. Recent results show

that contact restraints with an accuracy higher than 22%

could have positive effect on the ab initio simulations (Zhang

et al., 2003).
The methods of protein contact prediction can be categorized

into 3 classes: (1) statistical methods using correlated mutations

(Gobel et al., 1994; Halperin et al., 2006; Kundrotas and

Alexov, 2006; Olmea and Valencia, 1997; Vicatos et al., 2005);

(2) machine learning (Fariselli and Casadio, 1999; Punta and

Rost, 2005; Vullo et al., 2006) and (3) threading template-based

voting (Misura et al., 2006; Shao and Bystroff, 2003; Skolnick

et al., 2004; Wu and Zhang, 2007a). There are also other

combinations of the first two methods (Fariselli et al., 2001;

Hamilton et al., 2004; Shackelford and Karplus, 2007).

For a given target, the correlated mutation methods collect

a set of multiple sequence alignments (MSA) and identify the

residue pairs mutating cooperatively along the MSA which tend

to be in contact spatially. The hypothesis behind this is that

during natural evolution if one residue mutates, the residues in

contact will mutate as well, to compensate for the changes and

keep the stability of the structure (Gobel et al., 1994; Vicatos

et al., 2005). Despite the theoretical attractiveness, the predic-

tion accuracy based on correlated mutation alone is quite poor.

The highest accuracy of the correlated mutation based predic-

tions is around 20% (Fariselli et al., 2001; Halperin et al.,

2006). Recently, Shackelford and Karplus (2007) found that

a statistical significance of the correlated mutation combined*To whom correspondence should be addressed.
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with other features result in significant improvements of con-
tact prediction.
The machine learning generates contact predictions by train-

ing the contact maps of known structures on a variety of
sequence-based features including sequence profiles, secondary

structure predictions and correlated mutations. The training

techniques include neural networks or support vector machines,
where the parameters used for prediction can be locally or

globally optimized (Cheng and Baldi, 2007; Fariselli and
Casadio, 1999; Pollastri and Baldi, 2002; Punta and Rost,

2005; Shackelford and Karplus, 2007; Vullo et al., 2006). The
best prediction accuracy by the latest machine-learning tech-

niques can achieve an accuracy around 37% (Cheng and Baldi,
2007; Vullo et al., 2006).

Finally, the template-based approaches identify the tem-
plate proteins by threading which may have similar folds as

the target. Contact predictions are then collected from the 3D
template structures and alignments. This is a method that

most of the tertiary-structure predictions exploit the contact
restraints from (Chivian et al., 2005; Sali and Blundell, 1993;

Shao and Bystroff, 2003; Wu and Zhang, 2007a; Zhang and
Skolnick, 2004a; Zhang et al., 2003).

The accuracy of the template-based contact prediction
methods depends on the quality of the template structures,

which are sensitive to the level of homologous sequence cutoffs
used in threading. Because the training of the sequence-based

methods are independent of the solved protein structures,
a general hope is that the sequence-based methods could

generate better contact predictions than template-based meth-
ods especially for the ab initio/new-fold targets. Until now,

there is no comprehensive examination of the accuracy of these
contact predictions with regard to different template condi-

tions. Although the recent CASP experiments provide a string-

ent and blind test to the sequence-based and structure-based
approaches, the latter is collected from a single 3D model (using

a random set with a given cutoff or rank based on residue
distances) (Grana et al., 2005; Izarzugaza et al., 2007), which

differs from the most popular methods in collecting contacts
from multiple templates based on occurrence frequency. The

data set in CASP NF category (10–20 targets) is also relatively
small.

In this work, we develop two algorithms of SVM-SEQ for
sequence-based contact prediction and SVM-LOMETS for

template-based contact prediction. We examine the algorithms
based on the same set of large-scale benchmark proteins as well

as the CASP7 new-fold targets. One of the major purposes is
to examine in detail the strength and weakness of the methods

in different category of protein targets, which may be used as
a guide for the use of contacts in 3D structure modeling.

2 SYSTEMS AND METHODS

2.1 Definition of contacts

There are a number of contact definitions which differ in the interested

atoms, sequence separation and distance cutoffs. The most physically

meaningful definition is based on the van der Waal’s distance of

atoms; but it is not commonly used. In this article, we define a pair of

residues as contact if their C� atom distance is 58 Å, which is close

to the definition used in 3D structure modeling (Wu et al., 2007;

Zhang et al., 2003). Depending on the sequence separation, we divide

the contacts into short-, medium- and long-ranges, which correspond to

the sequence separation equal to 6–11, 12–24 and 424, respectively,

following the categorization in CASP7 experiments (Izarzugaza et al.,

2007). However, CASP7 uses the C� atoms instead of C�s.

The effect of the contact restraints to 3D structural modeling

depends on both accuracy and number of the predictions. For a given

range of sequence separation, the accuracy of predictions is defined

as Acc¼Ncorr/Npred, where Ncorr is the number of correctly predicted

contacts that are true contacts in the native structure, Npred is the total

number of predicted contacts in the range. We assess the number of

contact predictions by the percentage relative to the length of the target

sequence L, i.e. Pct¼Npred/L.

2.2 SVM-SEQ

For a set of selected PDB proteins, residue pairs in the training

structures are categorized into ‘contacted’ or ‘non-contacted’ based on

the above-mentioned definitions. In principle, the training data should

cover as many as possible residue pairs. However, including too many

pairs in the training data will request a long training CPU time and

large disk spaces. Second, the number of non-contacted pairs is much

larger than that of contacted pairs in real structures (420 : 1). Therefore,

a training machine based on the whole set of residue pairs will be biased

to the non-contacted pairs, which would result in fewer predictions for

contacted pairs. For this purpose, by trial and error, we keep the ratio

of non-contacted/contacted residue pairs as 4:1 by randomly selecting

a subset of residue pairs.

There are two sets of features exploited.

Local window features The local features include: (1) position-specific

scoring matrices (PSSM); (2) secondary structure predictions and

(3) solvent accessibility predictions. The PSSM is generated by the PSI-

BLAST search of the query against a non-redundant sequence database

(Altschul et al., 1997), with 20 log-odds scores are taken at each

position. The secondary structure is predicted by PSIPRED (Jones,

1999), where three states are defined as alpha-helix (represented by

[0 1 0]), beta-strand [0 0 1] and coil [1 0 0]. The solvent accessibility is

predicted by the neural network training (Chen and Zhou, 2005;

Wu et al., 2007), where two states are assigned to the residues based on

the solvent accessible surface area525% (buried, represented by [0 1])

or �25% (exposed, by [1 0]). Both features of (2) and (3) are binary

features. Since for each residue we count a 15-residue window, the

number of total local features for the residue is 375 (¼15 * (20þ 3þ 2)).

For a residue pair (i and j), the total number of the local window

features is 750.

In-between segment feature sets The residue pairs of similar local

features sometime have different contact status because of the different

structural components between the considered residues. To account

for the contribution of these residues, we also train the contact maps on

the in-between segment features. These include: (1) the number of the

residues between i and j, i.e. |i-j|; (2) the compositional percentage

of three secondary structure elements and two burial states for the

in-between residues; (3) state distributions of the in-between residues,

which are specified by four moments Fn ¼ k� kh ið Þ
n

� �
, n¼ 1, 2, 3 and 4,

where k (¼ m�i) is the position of the mth residues relative to i along

the chain and each moment is calculated for five specific states of helix,

strand, coil, burial and exposure and (4) the local features of five

selected in-between residues which are evenly distributed between i

and j. Here the window size for the local features is one. The total

numbers of in-between features are 31/37/168 for each short/medium/

long-range residue pair, respectively.

Following the collection of the real contact maps and the local

and in-between feature data from the set of training proteins, the SVM

software developed by Joachims (2002) is used to classify the contacted

and non-contacted residue pairs. We also tried to train the same input
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data based on neural network (NN) with a variety of parameters tuned.

Based on the result of 554 testing proteins, the contact prediction

accuracy of our best NN is about 30% lower than that by SVM at

a given Pct¼ 0.5. One reason is probably that the final solution of

SVM is a global optimum while that of NN is local (Burges, 1998).

2.3 LOMETS and SVM-LOMETS

LOMETS (Wu and Zhang, 2007a) is a local meta-threading server

which include nine locally installed threading programs, i.e. FUGUE

(Shi et al., 2001), HHSEARCH (Soding, 2005), PAINT, PPA-I, PPA-II

(Wu and Zhang, 2007a), PROSPECT2 (Xu and Xu, 2000), SAM-T02

(Karplus et al., 2003), SP3 and SPARKS2 (Zhou and Zhou, 2004; Zhou

and Zhou, 2005). For each target, LOMETS first thread a sequence

through the PDB library to identify possible templates by the programs.

The consensus contact residue pairs, which are ranked based on the

occurrence frequency on the top 20/30/50 templates depending on

the category of the target, are collected as contact predictions. The

threading programs in LOMETS represent a diverse set of the state-of-

the-art algorithms using different approaches: Sequence profile align-

ments (PPA-1, PPA-II, SPARKS2, SP3), structural profile alignments

(FUGUE), pair-wise potentials (PROSPECT2, PAINT) and the hidden

Markov models (HHsearch, SAM-T02). Template identification and

the sequence-template alignment are therefore complementary to each

other. A consensus combination of the meta-server algorithms signif-

icantly outperforms the individual threading methods (Fischer, 2003;

Ginalski et al., 2003; Wu and Zhang, 2007a).

One defect of the LOMETS prediction is the coarse-grained distance

cutoff (e.g. a distance of 7.9 Å or 8.1 Å results in different assignment of

contact or non-contact despite the tiny difference). Also, the alignment

quality of the templates has not been considered. In SVM-LOMETS,

we use the SVM algorithm to train the distance cutoff parameters and

the alignment qualities on the contact map. For each pair of residues

(i and j), the training features include: (1) frequency of the contacts

occurred on the top N templates where N will be decided below; (2) the

average and the SD of the C� distance (dij) calculated from the

templates which have dij512 Å; (3) the continuity of the template frag-

ments near the residues which is defined as the number of continuously

aligned residues within a 5-residue window; (4) the burial depth of the

residues which is calculated as the distance from the C� atoms of i and j

to the centroid of the template structure divided by the radius

of gyration; (5) the average of the normalized Z-scores (Z/Z0) of

the templates with the contact occurred, where Z¼ (S�5S4)/�S
and S is the raw-score of original threading alignment and �S the

SD. Z0 is a program specific Z-score cutoff to distinguish ‘good’ and

‘bad’ templates, i.e. Z0(FUGUE)¼ 6, Z0(HHsearch)¼ 11, Z0(PAINT)

¼ 0.5, Z0(PPA-I)¼ 8.2, Z0(PPA-II)¼ 7, Z0(PROSPECT2)¼ 3.2,

Z0(SAM-T02)¼ 9.5, Z0(SP3)¼ 8 and Z0(SPARKS2)¼ 8.8; (6) the

structural similarity of the templates with the contacts occurred which

is calculated by the average TM-score between the templates (Zhang

and Skolnick, 2004b) and (7) the predicted TM-score of the templates

respective to the native which is estimated by a separate SVM training

based on the Z-score and the alignment length. The average difference

of the estimated TM-score and the real TM-score of the templates is

0.09 based on a set of 11 080 testing templates. The first four features

correspond to the property of the specific residue pairs; the last three

account for the quality of the templates which are related to the

reliability of the contacts.

The final result of the SVM-LOMETS predictions is sensitive to N,

the number of used templates. In general, we want to include more

templates so that we can cover more contacts and have more consensus

information. But including more templates will involve more false

positive alignments. In SVM-LOMETS, we collect nine different train-

ing datasets with 10, 20, 30, 40, 50, 60, 70, 80 and 90 top templates

where the rank of the templates is decided based on the average

performance of the threading program and the specific Z-scores

as described in Wu and Zhang (2007a). The targets are split into

three categories of ‘Easy’, ‘Medium’ and ‘Hard’ based on the specific

Z-scores of the programs. Therefore, there are 27 SVM classifiers

trained in SVM-LOMET. A mapping table from the number of

templates of Z-score40.55 *Z0 to N will be used to determine which

SVM classifier will be finally used to generate the contact predictions

for a specific target. This mapping table is decided based on the best

contact accuracy in the training proteins.

3 RESULTS AND DISCUSSION

3.1 Training dataset

For the purpose of training SVM-SEQ and SEQ-LOMETS,

we select 500 non-homologous proteins from PDBSELECT

(Hobohm and Sander, 1994) with a pair-wise sequence identity

525% and sizes ranging from 50 to 559. We remove from the

training set the proteins that include broken chains or missing

entities or format errors. Overall, the training data include

21 826/26 738/28 000 contacts and 87 304/106 952/112 000 non-

contacts which are randomly selected in the short/medium/

long-ranges, respectively. The data follows a ratio of 1:4 for the

contact/non-contact residues.

3.2 Results of sequence-based methods: SVM-SEQ

versus other machine-learning methods

Although there is difference in the tested proteins and the

definition of contacts, the overall accuracy of the contact

predictions for the same number of predictions in literature

gradually increases due to the increase of databases and the

improvement of algorithms (see for a summary of Table S1 in

Supplementary Material).

For testing SVM-SEQ, we first generate contact predictions

for a set of 173 proteins taken from Fariselli et al. (2001). These

proteins are selected because the authors listed the names of all

targets in the article so that we could have a direct comparison

of our method using the same protein set. For each target, our

contacts are ranked based on the confidence score defined by

the SVM-light outputs (Joachims, 2002). At each sequence-

separation range and for each target, we collect the top-ranked

predictions with a Pct¼ 0.5, which will result in an overall

Pct¼ 1.5. The accuracy (Acc¼ 0.36) of the short-range contact

prediction is higher than that of the medium- (0.28) and long-

range (0.25) ones. This is expected because the short-range

contacts are mainly from the regularity of secondary structures

which can be predicted with a high accuracy by the sequence-

profile based training (Jones, 1999). But even for the hardest

long-range contact prediction, the accuracy (0.25) of our

method is higher than the all-range average accuracy (0.21)

by Fariselli et al. (2001) who did not split their data into specific

ranges and had an overall Pct¼ 0.5. The average overall

accuracy of SVM-SEQ for all proteins is 0.29 with Pct¼ 1.5,

compared with Acc¼ 0.21, Pct¼ 0.5 by Fariselli et al. (2001)

(see Table S1).

The second test set includes 554 non-homologous proteins

with a pair-wise sequence identity 525% and with length

ranging from 50 to 300 residues (a list of the proteins can be

found at http://zhang.bioinformatics.ku.edu/LOMETS/list1).
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To minimize the possible memorization of the training proteins,

these testing proteins are non-homologous to the 500 training

proteins with a sequence identity525%. In Table 1, we show

the prediction results of SVM-SEQ together with SVMCON

(Cheng and Baldi, 2007) for the 554 proteins. SVMCON is one

of the best sequence-based contact predictors which was ranked

as top-5 in the CASP7 (only clearly outperformed by SAM-T06

depending on the way of counting scores) (Izarzugaza et al.,

2007). It is also the only software we can obtain and install in

our local computer, which allows us to generate the predictions

for the same set of test proteins and using the same contact

definitions. However, we note that the proteins homologous to

the training proteins of SVMCON may not be completely

removed from our testing data because the training protein list

of SVMCON is unknown to us.

For the convenience of comparison, we select the same

number (L/2) of top predicted contacts in each sequence

separation range and for each target. In some cases where the

number of contact predictions by SVMCON is less than L/2

at some range, we will use the same amount of contacts for

both methods for the same target, which results in the average

predictions slightly less than L/2. As shown in Table 1, for the

short- and medium-range contacts, SVM-SEQ outperforms

SVMCON by 13 and 6%, which correspond to a P-value

51.0� 10�15 and 0.0005 by t–test, respectively. For long-range,

SVM-CON is very slightly better but the difference is not

statistically significant with a P-value¼ 0.79 in t-test. The aver-

age overall accuracy of SVM-SEQ is about 7% higher than that

of SVMCON with a P-value510� 10�6 by t-test.

These data show some modest (if any) advantage of SVM-

SEQ in comparison with current machine-learning methods.

The improvement on the short- and medium-ranges may be

due to the larger set of training data combining both local

and in-between features, more specific training on different

sequence separation ranges, and the tuned ratio of contact/non-

contact numbers. Consequently, our machine is about 50%

slower than SVMCON. In the following, we will refer the

sequence-based results to that by SVM-SEQ.

3.3 Results of template-based methods:

SVM-LOMETS versus LOMETS

The template-based methods of LOMETS and SVM-LOMETS

are tested on the same set of 554 proteins. For the convenience

of comparison, we select the number of predicted contacts in

SVM-LOMETS equals to that of LOMETS for each target

in each sequence-separation range while the latter collects

contacts based on a frequency cutoff40.18 (Wu and Zhang,

2007a). To avoid the contamination of homologous templates,

we exclude all templates with the sequence identity 420% to

the target sequence from the threading template library or

detectable by PSI-BLAST with an E-value50.05 (run with the

option ‘-j 3 –h 0.001’).

As shown in Table 2, for the same number of predictions, the

average accuracy of SVM-LOMETS is 0.52/0.50/0.44 for short/

medium/long-range contacts, respectively, compared with the

accuracy of LOMETS of 0.48/0.47/0.42. The overall accuracy

of SVM-LOMETS and LOMETS are 0.53 and 0.50, respec-

tively, a difference of 5.2% with a P-value 51.0� 10�10 by

t-test. This improvement of SVM-LOMETS demonstrates the

effect of the detailed tuning of the distance parameters and

template quality. In the following, we will refer the template-

based results to that by SVM-LOMETS.

3.4 Template-based versus sequence-based methods

3.4.1 Overall result In Table 3, we summarize the contact
prediction results from the template-based (SVM-LOMETS)

and sequence-based (SVM-SEQ) methods. For each sequence

separation range, we select the top L/2 predictions, which result

in 1.5L total predictions for each target.
The results for all the 554 targets are listed in the last two

rows of Table 3. For the full-range prediction, the average

accuracy (0.39) of SVM-LOMETS is obviously higher than that

(0.28) of SVM-SEQ. The average TM-score of the first template

is 0.41, which indicates that the LOMETS templates have

considerable structural similarity to the native although the

homologous templates are excluded, which account for the

better overall performance of SVM-LOMETS. If we further

divide the predictions into different ranges, SVM-LOMETS

mainly outperforms SVM-SEQ in the medium- and long-ranges

(by 26 and 118%, respectively). For the short-range contacts,

the accuracy of SVM-SEQ is about 3% higher than that of

SVM-LOMETS, which is probably because the short-range

contacts are correlated with the local secondary structure regu-

larity and the highly-accurate (�80%) secondary structure

prediction from PSIPRED has been used as the major input

feature in the SVM-SEQ training. This tendency can be clearly

seen in Figure 1 (Row 1), a head-to-head comparison of the two

Table 1. Sequence-based contact predictions on 554 testing proteins

Range Method Acc Pct

Short SVM-SEQ 0.362 0.490

SVMCON 0.320 0.490

Medium SVM-SEQ 0.297 0.459

SVMCON 0.279 0.459

Long SVM-SEQ 0.222 0.457

SVMCON 0.224 0.457

All SVM-SEQ 0.291 1.393

SVMCON 0.271 1.393

Table 2. Template-based contact predictions on 554 test proteins

Range Method Acc Pct

Short SVM-LOMETS 0.516 0.299

LOMETS 0.484 0.299

Medium SVM-LOMETS 0.499 0.324

LOMETS 0.470 0.324

Long SVM-LOMETS 0.444 0.591

LOMETS 0.417 0.591

All SVM-LOMETS 0.526 1.185

LOMETS 0.500 1.185

Protein contact prediction methods
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methods in different ranges, where SVM-SEQ does a much

better job in short-range than in medium- and long-ranges.

3.4.2 Targets in different category We divide the 554 test
targets into ‘Easy’, ‘Medium’ and ‘Hard’ targets according to

the combined threading significance score of LOMETS, i.e. if

there is at least one template with Z4Z0 in each of the thread-

ing programs the target is Easy; if there is no good template of

Z4Z0 in any of the programs it is Hard and the others are

medium target. The number of targets and the contact predic-

tion results in each category are listed in the upper part of

Table 3. A head-to-head comparison of the contact predictions

for different targets is shown in Figure 1.

As expected, the performance of SVM-LOMETS is strongly

correlated with the target category or the quality of the

templates. Actually, the average TM-score of the first template

in Easy, Medium and Hard are 0.54, 0.44 and 0.27, respectively,

which results in an accuracy reduction in the whole range by 2.5

times from 0.54 to 0.22. It is worth noting that for the ‘Easy’

and ‘Medium’ targets, the accuracy of the medium- and long-

range predictions is higher than that of short-range. This is

partially because the total number of the native contacts in the

short-range is much smaller than that in the long range. For

Easy targets, because of the correctness of global topology of

the threading templates, 70.2% contact predictions in long-

range are correct with a Pct¼ 0.5. But even if we could predict

all native contacts in the first L/2 predictions, the average

accuracy of the short-range prediction is50.6 with a Pct¼ 0.5.

Another reason is the extensive alignment gaps in threading

which reduces further the upper-limit of the short-range contact

predictions.
A somewhat unexpected result is the dependence of SVM-

SEQ on the target categories since the SVM-SEQ does not

exploit the template information. The accuracy of SVM-SEQ is

decreased by about 35% from Easy (0.334) to Hard targets

(0.247). In Figure 2, we present the prediction accuracy versus

the number of sequence homologues hit by PSI-BLAST with

Table 3. Sequence-based and template-based contact predictions on 554 test proteins

Target type Na TMb Nsc Method Short-range Medium-range Long-range All-range

Acc Pct Acc Pct Acc Pct Acc Pct

Easy 220 0.544 2774 SVM-LOMETS 0.440 0.5 0.491 0.5 0.702 0.5 0.542 1.5

SVM-SEQ 0.404 0.5 0.331 0.5 0.270 0.5 0.334 1.5

Medium 98 0.438 807 SVM-LOMETS 0.352 0.5 0.366 0.5 0.530 0.5 0.404 1.5

SVM-SEQ 0.348 0.5 0.257 0.5 0.197 0.5 0.263 1.5

Hard 236 0.270 526 SVM-LOMETS 0.256 0.5 0.226 0.5 0.200 0.5 0.220 1.5

SVM-SEQ 0.325 0.5 0.264 0.5 0.172 0.5 0.247 1.5

Very hard 16 0.190 7 SVM-LOMETS 0.305 0.5 0.215 0.5 0.097 0.5 0.206 1.5

SVM-SEQ 0.346 0.5 0.222 0.5 0.206 0.5 0.258 1.5

All 554 0.408 1468 SVM-LOMETS 0.351 0.5 0.366 0.5 0.472 0.5 0.388 1.5

SVM-SEQ 0.361 0.5 0.290 0.5 0.217 0.5 0.284 1.5

aNumber of proteins in each category.
bAverage TM-score of the first LOMETS template.
cAverage number of homologous sequences identified by PSI-BLAST.
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predictions.
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an E-value50.001, which shows a weak but clear correlation

(correlation coefficient¼ 0.26). Most of the Easy targets have

a higher number of homologous sequences (see also column 4

of Table 3). The larger number of homologous sequences helps

construct a better PSSM which SVM-SEQ has been mainly

trained on. This explains the different performance of SVM-

SEQ in different categories, a tendency also noticed by

Shackelford and Karplus (2007).

The more interesting data in Table 3 is the performance

of contact prediction in the Hard targets, where the average

accuracy of SVM-SEQ for all range (0.25) is higher than that of

SVM-LOMETS (0.22). This is mainly due to the good predic-

tion of SVM-SEQ in the short- and medium-ranges which

are 27% and 17%, respectively, higher than that of SVM-

LOMETS. In the more important long-range contacts, SVM-

SEQ (0.17) is still slightly lower than SVM-LOMETS (0.20).
In order to completely rule out the template effect, we isolate

a set of 16 ‘Very Hard’ proteins which have a TM-score50.23

for the first threading template and with 515 PSI-BLAST

homologous sequences. This cutoff is subjective and can be

replaced by other reasonable cutoffs. The average TM-score of

the first templates is 0.19, which is close to a random structure

pair of TM-score¼ 0.17 (Zhang and Skolnick, 2004b). In this

new category, the accuracy of the SVM-SEQ predictions is

higher than that of SVM-LOMETS in all contact ranges.

Especially in the long-range prediction, the accuracy of SVM-

SEQ is 0.21, which is double of that (0.10) of SVM-LOMETS.

From the data of the Hard and Very Hard targets, it is

obvious that the sequence-based contact prediction can be

comparable or even better than that by the template-based

prediction. These may be the targets on which the sequence-

based contact prediction can help 3D structure modeling.

In Figure 3, we specifically count the portion of correctly pre-

dicted contacts by SVM-SEQ, which is not predicted by SVM-

LOMETS. Both methods have the same number of predictions

in each target. Although the percentage of the SVM-SEQ

correct predictions new to SVM-LOMETS is small in Easy

(18%) and Medium (34%) targets, for the Hard (/Very Hard

targets), 51%(/54%) of the correct contacts in SVM-SEQ are

new to the SVM-LOMETS prediction. Although the majority

of the native contacts are not predicted by either SVM-SEQ or
SVM-LOMETS for Hard (/Very Hard) targets, a combination

of SVM-SEQ with SVM-LOMETS can result in an enlarge-

ment of the total correct contact predictions by 62% (/67%),

where the number of correct long-range contact predictions

increases by 70% (/157%), compared with using SVM-

LOMETS alone. This gives hope to the employment of the ab

initio contact prediction in the structure modeling for the Hard

targets (Wu and Zhang, 2007b).

3.4.3 New fold targets in CASP7 We examine the sequence-

and template-based methods on the 15 new fold (NF) targets as

categorized in the CASP7 experiment. Because by definition

there is no similar structure solved in the PDB library for these

targets, this should represent a stringent test of the template-
based contact prediction methods. In fact, when we run

LOMETS on a template library with templates elder than

April 2006, the average TM-score of the first template is 0.23,

close to the TM-score threshold for random structure pairs

(�0.17), which confirms the CASP7 categorization for the NF

targets.
For the CASP7 contact prediction evaluation, contacts are

defined by the distance of C� atoms. Since SVM-LOMETS and

SVM-SEQ have been trained and discussed in C�, we will still

use the C� distance to define our contact and compare it to the

CASP7C� contacts. We also retrained our methods based on

the C� distance but there is no observable difference. For each

sequence separation range, we only evaluate the top L/5 contact

predictions, following the cutoff used in CASP7 (Izarzugaza

et al., 2007). The results are listed in Columns 3 and 4 of

Table 4. Remarkably, for this set of proteins, SVM-SEQ signif-
icantly outperforms SVM-LOMETS in all the ranges. Espe-

cially, for the long-range contacts, because the templates

are almost random, the accuracy by SVM-LOMETS is close

to random (0.054) but SVM-SEQ has an average accuracy

of 0.202.
We also list in Table 4 the results of SAM-T06_server by

Karplus Group (Shackelford and Karplus, 2007), the best

server predictor in the CASP7 experiment, with contact predic-

tion data taken from http://predictioncenter.org/casp7/. We

have excluded the targets which have less than L/5 contact

predictions. On average, the accuracy of SVM-SEQ is a little

higher than that by SAM-T06 in all sequence separation ranges.

Since the number of the evaluated targets with L/5 contact
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Fig. 2. The prediction accuracy by SVM-SEQ versus the number of
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Fig. 3. The portion of the correctly predicted contacts. The forward

and backward shadow regions represent, respectively, the prediction by

SVM-LOMETS and SVM-SEQ, with the cross-shadow regions by both

methods. The numbers indicate the percentage over the whole set of real

contacts in the native structures.
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predictions varies among the prediction methods, in the

parenthesis of Table 4, we also list the data for the common

targets where all three methods have L/5 contact predictions.

The results are similar as that of all targets. Here we note that

SVM-SEQ does not include any of the CASP7 targets in the

training set. Although the small set of testing targets prevent

us from drawing any solid conclusion here, it seems to be

safe to state that the SVM-SEQ is close to the state-of-the-art

sequence-based contact prediction methods. We will further

examine SVM-SEQ in the forthcoming CASP8 experiment.

4 CONCLUSIONS

We develop two algorithms of SVM-SEQ and SVM-LOMETS

for protein-contact predictions. SVM-SEQ generates the pre-

dictions only based on sequence information, where secondary

structures, solvent accessibility, sequence profile and sequence

separations derived from the sequences are trained on contact

maps by the SVM technique. Based on the same number of

predictions, the accuracy of the contact prediction by SVM-

SEQ is comparable to the top sequence-based machine-learning

methods published in the literature and in recently CASP7

experiments.
SVM-LOMETS generates the contact predictions based

on the threading templates from multiple threading programs.

The contact frequency, C�-distances and template qualities are

trained on the contact maps by SVM as well. It generates

slightly better contact predictions (by 5.2%) than the original

LOMETS method, which collects the predictions purely based

on counting the contacts on the multiple templates.
We assess the sequence-based and template-based contact

predictions using the same set of 554 non-homologous proteins.

First of all, even after removing the homologous templates with

sequence identity420% or detectable by PSI-BLAST, there is

still a considerable portion of good templates which can be

detected by the sophisticated threading techniques. Therefore,

the overall accuracy of contact prediction based on templates

is much higher than that by the sequence-based contact pre-

dictions. This explains the dominate rule of template-based

contact prediction in guiding 3D structural modeling.
For the Hard (or Very Hard) targets where threading does

not have significant alignments, SVM-SEQ generates contact

predictions with an accuracy comparable or better than the

template-based prediction along all sequence-separation ranges.

There are more than 50% of the sequence-based correctly

predicted contacts that are not generated by the template-based

methods. A combination of SVM-SEQ with SVM-LOMETS

results in an increase of the total number of correct contact

predictions by more than 60% (or 70% if only long-range

contact predictions are counted). A preliminary test demon-

strates that incorporating the SVM-SEQ contact predictions

in the I-TASSER simulation results in an about 5% TM-score

increase for the first models of the Hard targets (Wu and

Zhang, 2007b).
The most significant advantage of the sequence-based con-

tact predictions is seen for the new fold targets as categorized in

the CASP7 experiment, which have no similar template struc-

tures solved in the PDB library. While the accuracy of the

threading template-based contact prediction is close to random,

SVM-SEQ still generates contact predictions with about 20%

of them being correct for the top L/5 long-range predictions.

This may be the most promising category where the sequence-

based contact prediction can help the tertiary structure

construction.
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