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SUMMARY

Protein template identification is essential to protein
structure and function predictions. However, con-
ventional whole-chain threading approaches often
fail to recognize conserved substructure motifs
when the target and templates do not share the
same fold. We developed a new approach, SEGMER,
for identifying protein substructure similarities by
segmental threading. The target sequence is split
into segments of two to four consecutive or noncon-
secutive secondary structural elements, which are
then threaded through PDB to identify appropriate
substructure motifs. SEGMER is tested on 144 nonre-
dundant hard proteins. When combined with whole-
chain threading, the TM-score of alignments and
accuracy of spatial restraints of SEGMER increase
by 16% and 25%, respectively, compared with that
by the whole-chain threading methods only. When
tested on 12 free modeling targets from CASP8,
SEGMER increases the TM-score and contact accu-
racy by 28% and 48%, respectively. This significant
improvement should have important impact on
protein structure modeling and functional inference.

INTRODUCTION

It has been well established that the number of folds in the

protein universe is limited (Chothia, 1992; Levitt, 2009; Orengo

et al., 1994). Analysis of known sequences and structures

suggests that the total number of protein folds in nature is one

to several thousand (Chothia, 1992; Orengo et al., 1994; Zhang

and Skolnick, 2005b). Accordingly, the solved proteins in the

PDB library have been classified into hierarchical families in a

variety of structural databases such as SCOP (Murzin et al.,

1995) and CATH (Orengo et al., 1997). The inherent discrete

characteristics of protein folding space lays down the corner-

stone for the widely used threading methods for protein structure

prediction (Bowie et al., 1991; Jones et al., 1992), which are

designed to detect homologous/analogous protein templates

by matching the whole-chain sequences of target proteins

to solved protein structures. Threading is by far the most reliable

and accurate approach to protein structure and function predic-
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tion when close homologous templates are not available (Kopp

et al., 2007; Wang et al., 2005; Zhang, 2008), i.e., for the targets

in ‘‘twilight-zone’’ (Rost, 1999).

In addition to the property of discreteness, it has been recently

demonstrated that the protein structure space may be consid-

ered as continuous in that the supersecondary structure motifs

can be used to link neighboring fold groups (Harrison et al.,

2002; Sadreyev et al., 2009; Skolnick et al., 2009; Yang and

Honig, 2000; Zhang et al., 2006; Zhang and Skolnick, 2005a).

Harrison et al. (2002) showed that most proteins in the PDB

have a significant structure overlap (spanning approximately

four to five secondary structure elements) with �10% of other

protein folds which the authors called ‘‘gregarious proteins,’’

while alpha/beta-proteins usually share substructure motifs

with >20% of other protein folds. The common substructure

motifs among different protein folds are of critical importance

for protein 3D structure modeling and biological function predic-

tions. First, the conserved structure pieces excised from

different protein structures can be directly used to assemble

new protein structure models in approaches such as ROSETTA

(Simons et al., 1997) and TASSER/I-TASSER (Wu et al., 2007;

Zhang and Skolnick, 2004a). Second, spatial restraints extracted

from the substructure motifs can be used to constrain the

modeling simulations (Sali and Blundell, 1993; Zhang et al.,

2003). Moreover, since the gregarious proteins have usually

different global folds, the conserved substructure motifs may

reflect ancient evolutionary relationships and therefore are asso-

ciated with special functional consequences (Harrison et al.,

2002; Todd et al., 2001). In a very recent work (A. Roy, S.

Mukherjee, P.S. Hefty, and Y. Zhang, unpublished data), the

authors threaded the supersecondary structure motifs in the

I-TASSER models through the protein structure library which

has known functions. It is found that the biological functions

(including ligand binding sites, enzyme Commission numbers,

and Gene Ontology terms) of a substantial number of protein

targets were correctly identified by pure structural comparisons

of the basic building blocks of proteins, which otherwise could

not have been inferred from sequence or profile-based searches.

The substructure motifs conserved between proteins of

different global folds, however, cannot be easily detected by

traditional whole-chain threading algorithms, because the align-

ment score is usually confounded by the structurally irrelevant

regions. To partly address the problem, several fragment-based

methods have been proposed in protein structure modeling. For

example, ROSETTA (Das et al., 2007; Simons et al., 1997) tries to

identify a set of fragments (three or nine continuous residues)
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from templates which are then used to assemble the global

topology of full-length structures. TASSER (Zhang and Skolnick,

2004a) and I-TASSER (Wu et al., 2007; Zhang, 2009) excise

continuously aligned structural fragments (�21 residues on

average) from threading templates which are then reassembled

by Monte Carlo simulations with the purpose of refining the

template structures. Chuck-TASSER (Zhou and Skolnick, 2007)

tries to use a ROSETTA-like procedure to build ab initio models

for fragments consisting of three consecutive secondary struc-

tures, which are then used to guide TASSER assembly of full-

length models. In a recent work, Hvidsten et al. (2009) built

a library of local substructure descriptors which are selected to

have structural element in contact. Residue contacts are then

predicted based on hidden Markov model training on the

substructure library (Bjorkholm et al., 2009).

Here, we develop a new segmental threading algorithm, called

SEGMER, which splits the target sequence into a number of

segments (short subsequences) and then threads them through

the solved protein structure library. The purpose here is to

remove the irrelevant fragments from target sequence in order

to increase the sensitivity of the threading algorithm in identifying

the specific substructures. We want to note that despite the

similar principle, i.e., attacking the structure prediction problem

using substructure motifs, the SEGMER algorithm is essentially

different from the above-mentioned algorithms. In ROSETTA

(Das et al., 2007; Simons et al., 1997), the fragment has a fixed

short size (three or nine continuous residues), which cannot

constitute a meaningful topology of substructures. In SEGMER,

however, we have target segments spanning several secondary

structures and focus on identifying the conserved and probably

structurally stable substructure domains. Therefore the

substructure identified by SEGMER should be more reliable in

terms of topological similarity. In TASSER/I-TASSER (Wu et al.,

2007; Zhang, 2009; Zhang and Skolnick, 2004a), the substruc-

tures are directly adopted from whole-chain threading align-

ments, which do not intend to remove the irrelevant sequence

segments, while SEGMER directly aligns isolated segmental

sequences with structural templates which help avoid side effect

of irrelevant sequence regions. In chunk-TASSER (Zhou and

Skolnick, 2007), since the ‘‘chunk-structure’’ is built by ab initio

simulation, it does not involve the procedure of threading

sequence segments through structure databases. SEGMER,

however, takes the advantage of templates when a suitable

substructure is available in template library. In the work by Hvids-

ten et al. (Bjorkholm et al., 2009; Hvidsten et al., 2009), the

mapping direction is from the whole-chain query sequence to

a preselected substructure. SEGMER does a reverse mapping

by aligning consecutive/nonconsecutive segmental query

sequences to the whole-chain templates and pick up the

substructures that match best with the segmental sequences;

this allows more flexibility in the substructure identifications

because it is usually unknown what boundaries the substruc-

tures should be spliced at before analyzing the sequence infor-

mation. In SEGMER, a predetermined substructure library is not

needed and the structural boundaries of the substructures are

automatically decided by the sequence-template alignments.

Moreover, the identified substructures do not necessarily have

the secondary structure elements in contact that is requested

by the Hvidsten et al. algorithm (Bjorkholm et al., 2009; Hvidsten
Structure 18,
et al., 2009). In summary, the novelty of SEGMER is that it

focuses on identifying conserved and probably stable substruc-

tures from template proteins by removing the side effect of

irrelevant residues, where other fragment-based methods in

literature aim at collecting small structural pieces as building

block of ab initio modeling (Das et al., 2007; Simons et al.,

1997), or excising structural fragments from whole-chain thread-

ing alignments (Wu et al., 2007; Zhang, 2009; Zhang and

Skolnick, 2004a), or constructing substructures by ab initio

modeling (Zhou and Skolnick, 2007), or threading sequences

from a predetermined substructure library (Bjorkholm et al.,

2009; Hvidsten et al., 2009).

One of the critical issues in SEGMER is the decision on the

sizes and locations of the sequence segments selected for

segmental threading, as well as whether the segments are

consecutive in sequence order. We will investigate the algo-

rithms using subsequences with various numbers of secondary

structure elements, distributed consecutively or nonconsecu-

tively. The performance of segmental threading will be systemat-

ically benchmarked along with state-of-the-art whole-chain

threading algorithms.

Definition of Segments
For a given protein, we first divide the query sequence into

segments with subsequences; here, a segment is defined as

a piece of sequence consisting of several regular secondary

structure elements (RSSEs) which include a helices and

b strands. The secondary structure is predicted from the

sequence using PSI-PRED (Jones, 1999). The RSSEs are further

smoothened to generate well-defined segments: First, an

‘‘island’’ RSSE of only one residue is converted to coil; second,

if a single-coil residue is sandwiched between two RSSEs, the

two RSSEs and the coil residue are merged into one longer

RSSE. Figures 1A and 1B illustrate this smoothing process for

the sequence of the Melampsora lini avirulence protein (PDB

ID: 2opcA).SEGMER considers two types of segments, covering

short- to long-range residue interactions: (1) segments

comprising consecutive RSSEs (no RSSEs are excluded

between neighboring RSSEs in the segment, see Figures 1C–

1E; (2) discontinuous segments comprising nonconsecutive

RSSEs (i.e., at least one RSSE is excluded between neighboring

RSSEs in the segment, see Figures 1F–1H). Each segment type

includes variable segment lengths, covering two to four RSSEs

for query sequences.

Data Sets
We downloaded a list of nonhomologous proteins from the

PISCES server (Wang and Dunbrack, 2003), which contains

proteins from the PDB with a sequence identity cutoff of 20%,

a resolution cutoff of 1.6Å and an R factor cutoff of 0.25. From

these proteins, we selected a set of 474 proteins with %1000

residues and five or more RSSEs. We have excluded small

proteins with two to four RSSEs because segmental threading

should produce very much the same results for these proteins

as conventional whole-chain threading. The proteins are

randomly divided into three sets, namely, 100 training, 80 valida-

tion, and 294 testing proteins. Of the 294 testing proteins, 150

are easy and 144 are hard targets. Here, the categories ‘‘easy’’

and ‘‘hard’’ are defined by the whole-chain threading program
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Figure 2. Illustration of the SEGMER Alignment of a Discontinuous

Query Segment with Discontinuous Segments of the Template

Residues 1–15 in the query belong to the first RSSE (red) and residues 100–120

belong to the fifth RSSE (blue). When the two query RSSEs are aligned with

residues 30–48 and 200–218 of the template, the gap penalty is set to zero

in the 49–199 residue range (yellow). This enables the nonconsecutive RSSEs

of the query to align with residues in regions that are far apart in the template

structures.

Figure 1. Illustration of Secondary Structure Elements

and the Segments used in SEGMER

The sequence is from the protein with PDB ID 2opcA.

(A) Original secondary structure prediction by PSI-PRED; alpha-helices, beta-

strands, and coils are represented by thick waves, thick solid lines, and thin

solid lines, respectively.

(B) In the smoothening process, residues 18 and 44 are merged into the neigh-

boring RSSEs while residues 61 and 92 are removed from the set of RSSEs.

(C–E) Continuous segments with two to four RSSEs.

(F–H) Examples of discontinuous segments with two to four RSSEs.
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MUSTER (Wu and Zhang, 2008b): if the Z-score of the align-

ments is R7.5, the topology of the template is usually correct

and the target is labeled as ‘‘easy’’; if Z-score is <7.5, the tar-

get is ‘‘hard.’’ A list of the proteins can be downloaded from

http://zhanglab.ccmb.med.umich.edu/SEGMER/output/list.txt.
Scoring Function
The scoring function for matching the query-template pairs in

segmental threading includes terms for both sequence- and

structure-based information. It contains sequence-based

profile-profile alignment, structure profile-profile alignment,

secondary structure, solvent accessibility, torsion angle, and

hydrophobic residue matches. A detailed description of the

scoring function and the parameter optimization is given in

Experimental Procedures. The best match for both continuous

and discontinuous segments is identified by a modified dynamic

programming algorithm (see Figure 2 and discussion in Experi-

mental Procedures). The raw alignment score for each template
860 Structure 18, 858–867, July 14, 2010 ª2010 Elsevier Ltd All right
is then transformed to Z-scores. The final templates are selected

based on the Z-score.

Evaluation Criteria
We evaluate the threading results mainly based on TM-score

(Zhang and Skolnick, 2004b), which has been defined to

combine alignment accuracy and coverage, and to assess the

quality of threading alignments by a single score value, i.e.

TM� score =
1

L

XLali

i = 1

1

1 +
d2

i

ð1:24
ffiffiffiffiffiffiffiffi
L�153p �1:8Þ2

(1)

where di is the distance of the ith pair of residues after an optimal

superposition of template and target. In the case of segmental

threading, L is the length of the target segmental sequence

and Lali is the number of aligned residues. Because TM-score

is scaled in a way to keep the score value of random structures

independent of the protein size, the TM-score of small proteins

(e.g., the segments in this study) is on average smaller than the

TM-score of large proteins for the same range of RMSD error.

RESULTS

We first test SEGMER on the 144 hard targets. To reduce the

contamination from homology, all homologous proteins with

a sequence identity >30% were excluded from our template

library. Counting all possible continuous and discontinuous

segments, the average number of segments that could be

defined is 6848 per protein for the proteins in our data sets,

with an average segment length of 41 residues. This number,

mainly due to the large number of possible discontinuous

segments comprising four RSSEs (5799 segments per protein),

is too large for current computing power. To speed up the

procedure, we only used up to 100 segments in each segment

category, selecting segments that produce no or only weak

whole-chain threading alignments in MUSTER. The average

number of segments used in SEGMER threading is 144 per

protein target.

Overall Result
The average TM-score of first alignment for all the 144 proteins is

0.380, with an average RMSD to native = 8.7Å. If we consider the

‘‘best in top five’’ alignments, the TM-score increases to 0.414.
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Table 1. Average TM-Score of the Substructures Predicted by

MUSTER, HHpred, and SEGMER

Segmentsa Methods First Best in Top 5

144 hard targets

Common SEGMER 0.377 0.415

MUSTER 0.325 0.385

HHpred 0.324 0.369

Unaligned SEGMER 0.448 0.480

150 easy targets

Common SEGMER 0.521 0.567

MUSTER 0.489 0.549

HHpred 0.487 0.535

Unaligned SEGMER 0.486 0.529

12 CASP8 FM targets

Common SEGMER 0.384 0.420

MUSTER 0.300 0.365

HHpred 0.259 0.295

Unaligned SEGMER 0.315 0.373

Boldface numbers show the best result in each category.
a ‘‘Common’’ are segments that have alignments by all three algorithms;

‘‘Unaligned’’ are segments that have no alignments by the whole-chain

threading algorithm MUSTER.

Figure 3. Average TM-Score of the First Threading Alignments for

Each Protein of 144 Hard Targets with Substructures Identified by

SEGMER versus That by Whole-Chain Threading

(A) SEGMER versus MUSTER.

(B) SEGMER versus HHpred.
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Having in mind that these proteins are hard targets and the

results are mainly from the regions lacking a strong template

and alignments, this result is promising since the obtained TM-

score is significantly higher than that expected for random

matches (TM-score = 0.17) (Zhang and Skolnick, 2004b).

In fact, 26% of the segments has an alignment with a RMSD

<2Å or TM-score >0.5.

In Table S1, we list the TM-score results from SEGMER in each

segment category. We observe two tendencies: First, there is no

clear relationship between SEGMER quality and segment length.

Although the average RMSD is lower for 2-RSSE segments than

for 3- or 4-RSSE segments, which is because of the well-known

length effect of RMSD (i.e., random pairs of bigger proteins tend

to have a higher RMSD [Zhang and Skolnick, 2004b]), the

average TM-score of the longer segments tends to be higher,

which indicates that the alignments of longer segments are

statistically more significant. Second, for the same segment

sizes, the average TM-score for continuous segments is higher

than that for discontinuous ones. This demonstrates that long-

range structures are more difficult to recognize in threading.
Comparison with MUSTER and HHpred
The performance of SEGMER can be most objectively judged

by comparing it with conventional whole-chain threading.

(Although the SEGMER alignments can also be compared with

the data obtained by assembly of multiple templates, results of

the latter vary remarkably depending on different ways of

template selections and fragment combinations [Cheng, 2008;

Fischer, 2003; Sali and Blundell, 1993; Wu and Zhang, 2007;

Zhang, 2009], on which the discussion is not the focus of this

work). For this purpose, we select two state-of-the-art threading

programs, HHpred (Soding et al., 2005) and MUSTER (Wu and
Structure 18,
Zhang, 2008b), which were ranked as the first and the second

best single threading programs in CASP8 based on the cumula-

tive TM-score or GDT-score. MUSTER uses a composite scoring

function similar to SEGMER’s for the whole-chain threading,

while HHpred employs a Hidden Markov Model (HMM) based

profile-profile alignment algorithm.

In Table 1 (rows 2–5), we show a summary of the average TM-

scores over the segment regions where all three programs

(SEGMER, MUSTER and HHpred) have common alignments.

There are 141 hard targets having on average 41 such segments

in each protein. The average TM-score of SEGMER (0.377) is

16.0% higher than that of MUSTER and 16.4% higher than that

of HHpred. The statistical significance of the higher performance

of SEGMER is tested by t test with a p-value < 1 3 10�8 over

MUSTER and HHpred. Figure 3 shows a head-to-head TM-score

comparison of SEGMER with MUSTER and HHpred (see circle

symbols for the hard targets). For each protein, the average

TM-score of all segments in the protein is presented as one point

in the figure. Out of the 141 targets, 95 (or 99) proteins appear in

the upper-left region where SEGMER outperforms MUSTER (or

HHpred). In 50 (or 54) cases, the absolute TM-score improvement

by SEGMER over MUSTER (or HHpred) is >0.05.

One reason for the TM-score improvement is an increase in

alignment coverage, from 0.80 (HHpred) or 0.87 (MUSTER) to

0.98 (SEGMER), meaning that segmental threading can identify

more complete alignments by focusing directly on the target

segmental sequences. The second reason is an improvement

of the alignment accuracy. In 31% of the segments, the RMSD

of the alignment by SEGMER is lower than that by MUSTER

while SEGMER’s alignment coverage is higher. If we consider

the 2-RSSE segments with an identical number of aligned resi-

dues in SEGMER and MUSTER, the RMSD of the SEGMER

alignments is 0.31Å lower than that of the MUSTER alignments.

This demonstrates that by focusing on more specific sequence

regions and excluding the interferences from irrelevant structure

regions, segmental threading can help improve the alignment

accuracy. In Figure 4, we present representative examples in

various segment categories, which show the advantage of

SEGMER in both alignment coverage and accuracy over the

whole-chain threading algorithms.
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Figure 4. Representative Examples of Substructure Motifs Identified

by Whole-Chain Threading and Segmental Threading for Different

Types of Segmental Sequences

The template structures from threading and the native structure are repre-

sented by green and blue cartoons, respectively. Rows 1, 2, and 3 are for

2-, 3-, and 4-RSSE segments, respectively. MUSTER, left side of arrows;

SEGMER, right side of arrows.
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In Figure 5, we show an illustrative example of full-length struc-

ture construction using the structure motifs identified by

SEGMER. To do this, we first sort all the SEGMER substructure

templates by a W-score (= Z-score + 2.5*TM-scoreSM), and then

superimpose the substructures in the order of their W-scores

onto the first template identified by MUSTER. Here, TM-scoreSM

is the TM-score between the SEGMER substructure and the

MUSTER template. The superimposed structural motifs are

merged into the full-length model while the regions overlapping

with the previously superimposed substructures are neglected.

In this example (PDB ID: 2 dkjA, a serine hydroxymethyltransfer-

ase), the best template from MUSTER has a TM-score = 0.655

(Figure 5A, left), while the new model constructed by the simple

superimposition has a TM-score = 0.789 (Figure 5A, right). This

significant improvement in TM-score is mainly due to the better

local structures identified by SEGMER (see examples in Figures

5B–5D), which are taken from a number of different segments

and templates as selected by the W-scores (Figures 5E and 5F).

Besides the segments aligned in common, SEGMER also

generates alignments for the segments for which the whole-

chain threading algorithms do not. There are 5162 such

segments which are distributed in 103 hard protein targets.

Surprisingly, the average TM-score of the unaligned region

(TM-score = 0.448) by SEGMER is considerably higher than

that of other regions (TM-score = 0.377). This is probably

because the commonly aligned regions in hard proteins have,

by definition, weak alignment scores in the whole-chain thread-

ing programs which tend to have low-quality templates, but the

unaligned regions in the whole-chain threading have on average

better templates compared with the weakly aligned regions.
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We have further compared the best templates identified by the

structural alignment program TM-align (Zhang and Skolnick,

2005b) and found that the TM-score of the unaligned regions is

indeed slightly higher than that of the weakly aligned regions.

Finally, we compare the performance of the three programs in

the various specific categories of segments, namely, continuous

and discontinuous, with two, three, or four RSSEs, as listed in

Tables S2–S7 (available online). SEGMER consistently outper-

forms MUSTER and HHpred in all these categories, as demon-

strated by the significantly improved TM-score values.

Dependence of the Improvement on Protein Size
The improvement of substructure identification by SEGMER

depends on the size of the target proteins. For small proteins,

because the size of the protein is close to that of the segmental

sequences, the procedure and the result of segmental threading

are similar to that of the whole-chain threading. But for larger

proteins, a large variety of segments is available for selection,

which allows identifying good substructure cores that are missed

by the whole-chain threading algorithms. Figure 6 shows the

dependence of the average absolute TM-score increase by

SEGMER over MUSTER on the protein size. Here, the TM-score

is first calculated as an average of all segments in each protein,

which is then averaged for all proteins in each chain-length

range. There is an obvious increase in TM-score improvement

as protein size increases. Also, the improvement is more

pronounced in hard than in easy targets. Therefore, the applica-

tion of SEGMER will yield the largest benefit in the case of large

and remotely homologous targets.

Test on Easy Targets
Although the major purpose of developing SEGMER is to

improve the threading alignments for hard targets, it is of interest

to examine how SEGMER performs on easy targets because the

alignments of easy targets often have some weakly aligned local

segments and gaps. We need to mention that ‘‘easy target’’ does

not mean a high sequence identity between target and template

because all homologous templates with a sequence iden-

tity >30% have been excluded.

There are 42,010 segments in 150 easy targets which result in

an average 280 segments per target. We repeat the SEGMER

procedure for the 150 easy targets without further tuning the

parameters. The TM-score results for the easy targets are listed

in the middle rows of Table 1 and Tables S1–S7. A similar

tendency to the one seen for the hard targets is observed; i.e.,

SEGMER could identify substructures of better quality than

whole-chain threading in all segment categories. The average

TM-score of the first template hit by SEGMER is 0.521, which

is 6.5% higher than that from MUSTER (or 7.0% higher than

that from HHpred). Figure 3 shows a head-to-head TM-score

comparison of SEGMER with MUSTER and HHpred (see star

symbols). The increase is slightly lower than that found for hard

targets, partly because the substructures of easy targets have

a better quality and TM-score, and therefore there is less room

for further improvement. Nevertheless, the TM-score improve-

ment is statistically significant, having a p-value < 1 3 10�5

over MUSTER and HHpred according to t test. The average

TM-score of the unaligned segments (0.486) is still slightly lower

than that of the commonly aligned regions for the easy targets
s reserved



Figure 5. An Illustrative Example of Constructing

a Full-Length Model for the Protein 2 dkjA Using

Segments Identified by SEGMER

Model and experimental structures are represented by

green and blue cartoons, respectively.

(A) (Left) The best template identified by MUSTER super-

imposed on the native structure. (Right) The full-length

model constructed by superimposing the SEGMER

segments on the MUSTER template.

(B–D) Representative examples of MUSTER (left) and

SEGMER (right) segments as compared with the native

structure.

(E) Distribution of different types of segments along the

combined model (each segment with the same color

can be a combination of several RSSEs).

(F) Distribution of different templates along the combined

model.
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because better templates are available in the threading-aligned

regions.

Test on CASP8 Free Modeling Targets
In the above tests, a sequence identity cutoff of <30% has been

conducted for excluding homologous templates. But there may

still be good templates left, which have similar global fold to the

target, especially for the Easy targets. Here, we test SEGMER on

12 free modeling (FM) targets/domains in the 8 Critical Assess-

ment of Techniques for Protein Structure Prediction (CASP8)

held in the summer of 2008. These FM domains were defined

by the CASP8 assessors as the targets which have no templates

of similar global topology in the PDB. To mimic the CASP8 condi-

tion, we exclude all the proteins from our structure library which

were released after May 2008.

The performance of SEGMER, MUSTER, and HHpred are

listed in the lower part of Table 1 and Tables S2–S7. The perfor-

mance of SEGMER, MUSTER and HHpred are listed in the lower

part of Table 1 and Tables S2–S7. SEGMER results are obtained

based on the truncated library with new proteins solved after
Structure 18, 858–867, July 14
May 2008 excluded; the MUSTER and HHpred

threading results were generated during the

CASP8 experiment. For the commonly aligned

segments, SEGMER achieves an average TM-

score = 0.384 for the first model, which is

28% (or 48%) higher than that by MUSTER (or

HHpred). For the best in top five models, the

improvement by SEGMER is >15% in both

cases. Although the sample size (=12, here)

may be too small to attain a solid conclusion,

the significant structural improvement demon-

strates the potential usefulness of SEGMER

on assembling structures of these real hard

targets.

Spatial Restraints
Full-length protein structure models in compara-

tive modeling can be constructed by satisfying

the spatial restraints extracted from template

structures (Sali and Blundell, 1993). The sparse

contact and distance maps can also be used
as restraints to guide the ab initio protein structure simulations

when template structural information is limited (Misura et al.,

2006; Zhang, 2007; Zhang et al., 2003). Four types of spatial

restraints are often used in protein structure prediction (Wu and

Zhang, 2007): (1) side-chain contacts; (2) Ca atom contacts;

(3) short-range Ca-distance maps (ji-jj % 6); (4) long-range Ca-

distance maps (ji-jj > 6).

Here, we examine the spatial restraints extracted from the

SEGMER threading alignments in comparison with those ex-

tracted from the MUSTER alignments. For the restraints from

MUSTER, we follow the procedure used in I-TASSER (Wu

et al., 2007; Zhang, 2007); i.e., we collected the contact

restraints and short-range distances from the top 50 (or 20)

templates for the hard (or easy) targets, selecting the contacts

based on their frequency of occurrence in the template struc-

tures. The long-range distance restraints are taken from the first

four templates with an average error as reported earlier (Wu and

Zhang, 2007). To obtain restraints from SEGMER alignments, we

use the same voting procedure as in MUSTER but all segmental

alignments with a Z-score >3 are used for collecting contacts,
, 2010 ª2010 Elsevier Ltd All rights reserved 863



Table 2. The Accuracy and Error of Spatial Restraints Extracted

from MUSTER, SEGMER, and a Combination of SEGMER and

MUSTER Alignments

MUSTER SEGMER SEGMER+MUSTER

144 hard targets

ACCCa
a 0.286 0.336 0.362

ACCSG
b 0.374 0.407 0.463

ERRshort

(# of pairs) c

1.40 (1009) 0.95 (570) 1.24 (1012)

ERRlong/

(# of pairs) d

2.83 (2610) 5.19 (1082) 2.46 (2612)

150 easy targets

ACCCa_all
a 0.628 0.653 0.692

ACCSG_all
b 0.753 0.739 0.793

ERRshort

(# of pairs) c

0.95 (1168) 0.52 (700) 0.82 (1205)

ERRlong/

(# of pairs) d

1.53 (3504) 2.36 (2406) 1.33 (3513)

12 CASP8 FM targets

ACCCa_all
a 0.131 0.138 0.146

ACCSG_all
b 0.141 0.187 0.209

ERRshort

(# of pairs) c

2.495 (437) 1.949 (286) 2.294 (461)

ERRlong/

(# of pairs) d

4.28 (527) 7.96 (342) 3.70 (528)

Boldface numbers show the best result in each category.
a Average accuracy for Ca contact prediction.
b Average accuracy for side-chain contact prediction.
c Average error in Å of the short-range distance predictions.
d Average error in Å of the long-range distance predictions.

Figure 6. Absolute TM-Score Increase Achieved by SEGMER Rela-

tive to MUSTER on Common Segments as a Function of Protein

Length

The protein lengths have been divided into five bins: (1�99, 100�199,

200�299, 300�399, and 400�1000).
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and the first four templates at each position are used to obtain

long-range distance maps.

In Table 2, we show the accuracies and errors of contact

prediction when L/2 contacts are predicted for proteins of length

L. The accuracy of contact prediction is defined as the number of

correctly predicted contacts divided by the number of all pre-

dicted contacts (L/2). It is worth mentioning that the restraints

from MUSTER are collected from the whole sequence while

the restraints from SEGMER in our procedure are from those

regions where the MUSTER threading has a weak alignment.

Nevertheless, the overall accuracy of the contacts from SEGMER

is still comparable or even better than that from MUSTER. For

hard targets, the accuracy of contacts from SEGMER is higher

than from MUSTER for both Ca and side-chain contacts, while

for easy targets, the contact prediction accuracy of SEGMER is

higher for Ca but lower for side-chain contacts than that of

MUSTER. Remarkably, when we combine the contacts from

SEGMER and MUSTER alignments, i.e., collect contacts from

a combined set of SEGMER and MUSTER alignments by using

the same voting procedure, the contact accuracy is significantly

higher than when using either MUSTER or SEGMER alone, which

shows that these two types of alignments and contact predic-

tions are complementary to each other. Overall, the accuracy of

SEGMER+MUSTER predictions, including both Ca and side-

chain center based contacts, is about 25% (8%) higher than

that from MUSTER for hard (easy) targets.

In Table S8, we divide the contact predictions into three cate-

gories based on the sequence separation of the predicted

contacts: (1) short-range (6 % ji-jj < 12); (2) medium-range

(12 % ji-jj < 24); (3) long-range (ji-jj R 24). For each target, we

select the top L/5 predictions. Again, we observe that the accu-

racy of contacts predicted by SEGMER+MUSTER is significantly

higher than that from MUSTER alone. For side-chain contact, for

example, accuracy of the short/medium/long-range predictions

by SEGMER+MUSTER are 46%/42%/42% compared with
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36%/31%/35% by MUSTER, respectively. The most important

long-range contact predictions have been improved by 21%

compared with MUSTER, which is mainly due to the contribution

from the alignments of the discontinuous segments. In an earlier

structure prediction experiment, we showed that contact predic-

tions with an accuracy >22% almost always generate positive

contribution to the ab initio structures modeling (Zhang et al.,

2003). As Table S8 shows, the contact prediction accuracy by

SEGMER+MUSTER is higher than 30% in all sequence separa-

tion ranges for both Ca and side-chain based contacts. Because

all homologous templates are excluded, this finding demon-

strates again the possible usefulness of the SEGMER prediction

in guiding ab initio structural simulations.

The accuracy of the predicted Ca distance maps is also shown

in Table 2 (rows 4, 5, 8, 9, 12, and 13) for the hard, easy, and

CASP8 FM targets. In the hard targets, the short-range distance

prediction by SEGMER is obviously more accurate (error =

0.95Å) than that by MUSTER (error = 1.40Å) because SEGMER

identifies better local secondary structures. But for long-range

distance restraints, the distance error of the SEGMER predic-

tions is larger than that from MUSTER. This is because the

SEGMER predictions are mainly concentrated on the weakly

aligned regions while MUSTER predictions span the whole

sequence. Due to the complementarity of these two algorithms,

the distance map prediction from SEGMER+MUSTER again
s reserved
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outperforms that from MUSTER alone by 0.37 Å. For the easy

and CASP8 FM targets, the improvements on the distance

map prediction are 0.20 Å and 0.58 Å, respectively.
DISCUSSION

We have developed a new divide-and-conquer type threading

algorithm, SEGMER, for identifying substructure motifs from

nonhomologous protein templates. This endeavor is mainly

motivated by the observation that nonhomologous protein pairs

often share common substructures even though the global folds

are different (Harrison et al., 2002; Sadreyev et al., 2009; Yang

and Honig, 2000; Zhang et al., 2006; Zhang and Skolnick,

2005a). These analogous substructure pairs could not be

efficiently identified by conventional whole-chain threading algo-

rithms because the scoring functions of these algorithms are

designed for recognizing the global folds and the structurally

irrelevant regions may confound the efficiency of the global

alignments. The advantage of SEGMER is that the irrelevant

parts of the target and template structures are excluded from

the alignment, which allows for better scoring and sharper selec-

tion of the specific substructure templates. An online server of

SEGMER is set up at http://zhanglab.ccmb.med.umich.edu/

SEGMER. The SEGMER source programs are freely download-

able at the same website.

Testing the new method on 144 nonhomologous hard protein

targets whose global fold cannot be correctly identified by

whole-chain threading algorithms, we find that SEGMER iden-

tifies significantly better substructures than the whole-chain

threading algorithms (HHpred and MUSTER), with an average

TM-score increase of 16%. When combined with the whole-

chain threading templates, the accuracy of the spatial restraints

of Ca and side-chain center contacts increases by about 25%

while the error of long-range distance map predictions reduces

by 0.37 Å on average. When applying SEGMER to 12 free

modeling (FM) targets from CASP8, the TM-score of the identi-

fied template segments has an improvement by 28%, the

contact accuracy (when combined with the whole-chain thread-

ing) is increased by 48%, and the error of the distance map from

the combined segment predictions is reduced by 0.58 Å.

It is worth mentioning that the purpose of developing the

segmental threading method is not to fully replace whole-chain

threading, and whole-chain threading remains an efficient

approach to recognize the global topology. The best results in

terms of predicted spatial restraints and assembled structures

are obtained by combining the segmental and whole-chain

threading alignments (see Table 2 and Figure 5). Nevertheless,

the significant improvement in the sensitivity of substructure

detection produced by SEGMER will have an important impact

on motif-based function annotation and segment-based full-

length protein structure assembly, especially for those proteins

that lack homologous or analogous templates. In fact, we have

used the results of SEGMER threading to guide I-TASSER struc-

ture assembly simulations, and obtained very promising prelim-

inary results in the modeling of ab initio protein targets. This

study was still in progress while the current paper was being

prepared. A study on the impact of segmental threading to the

biological function annotation of proteins is also in progress.
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Alignment Scoring Function

The scoring function for segmental threading includes eight terms. The score

of matching the ith residue of a segmental query sequence to the jth residue of

a template is

Scoreði; jÞ= Eseq prof + Esec + Estruc prof + Esa + Ephi + Epsi + Ehydro + Eshift

=
P20

k = 1ðFcqði; kÞ+ Fdqði; kÞÞLtðj; kÞ=2 + c1dðsqðiÞ; stðjÞÞ
+ c2

P20
k = 1Fstðj; kÞLqði; kÞ+ c3

�
1� 2jSAqðiÞ � SAtðjÞj

�

+ c4

�
1� 2

��fqðiÞ � ftðjÞ
���+ c5

�
1� 2

��4qðiÞ � 4tðjÞ
���

+ c6MðAAqðiÞ;AAtðjÞÞ+ c7

(2)

where ‘‘q’’ stands for the query and ‘‘t’’ for the template protein.

The first term Eseq_prof in Equation 2 is for the sequence profile-profile align-

ment. Fcq(i, k) and Fdq(i, k) are the frequencies of the kth amino acid at the ith

query position in a multiple sequence alignment (MSA) obtained by PSI-BLAST

(Altschul et al., 1997) run against the nonredundant sequence database nr

(ftp://ftp.ncbi.nih.gov/blast/db) for closely (E-value cutoff = 0.001) and

remotely homologous (E-value cutoff = 1.0) sequences, respectively. Equal

weights for the close and remote sequence profiles are the parameters best

tuned for the performance based on the validation data. For generating

frequency profiles, the redundancy of sequences in the MSA is accounted

for by Henikoff weights (Henikoff and Henikoff, 1994); in addition, a higher

weight is given to the sequences with a lower E-value (Wu and Zhang,

2008b). Lt(j, k) is the log-odds profile value (position-specific substitution

matrix in PSI-BLAST with an E-value cutoff = 0.001) of the kth amino acid at

the jth position of the template sequence.

The second term Esec computes the match between the predicted

secondary structure sq(i) of the ith query position and the actual secondary

structure st(j) of the jth position of template structures. d[sq(i),st(j)] equals 1

if sq(i) = st(j) and –1 otherwise. sq(i) is predicted by PSI-PRED (Jones, 1999)

while st(j) is generated by STRIDE (Frishman and Argos, 1995). Both sq(i) and

st(j) have three discrete states: alpha helix, beta strand, and loop.

The third term Estruc_prof is the score of matching the structure-derived

profiles (frequency) Fst(j, k) of the kth amino acid at the jth position of the

template (Wu and Zhang, 2008b) to the sequence profile (log-odds) Lq(i, k) of

the kth amino acid at the ith position of the query. To construct the structure

profile for templates, we compare a nine residue fragment from each template

with nine residue fragments from all proteins in a nonredundant protein data-

base selected by PISCES (Wang and Dunbrack, 2003). The top 25 closest frag-

ments for each template fragment are selected based on a similarity score

combining RMSD and the fragment depth similarity (Chakravarty and Varadar-

ajan, 1999; Wu and Zhang, 2008b). For the jth position of the template structure,

there are 25*9 = 225 aligned residues to construct the frequency profile Fst(j, k).

L(i, k) is the log-odds profile for the kth amino acid at the ith position of the query

sequence from the PSI-BLAST search with an E-value cutoff = 0.001.

The fourth term Esa accounts for the difference between the predicted

solvent accessibility SAq(i) of the ith position of the query and the actual solvent

accessibility SAt(j) of the jth position of template structures. The experimental

SAt(j) for the template is generated by STRIDE (Frishman and Argos, 1995). The

values of SAq(i) for query are predicted by an artificial neural network (Chen and

Zhou, 2005; Wu et al., 2007), which has a higher correlation coefficient (CC =

0.71) with the actual SAs than the widely used Hopp-Woods (Hopp and

Woods, 1981) (CC = 0.42) and Kyte-Doolittle (Kyte and Doolittle, 1982)

(CC = 0.39) hydrophobicity indices based on 2234 nonhomologous testing

proteins (Wu et al., 2007).

The fifth and sixth terms (Ephi and Epsi) calculate the match between the pre-

dicted torsion angles 4q(i) and cq(i) of the ith position of the query and the

actual torsion angles 4t(j) and ct(j) of the jth position of the template structures.

4t(j) and ct(j) for the template are calculated by STRIDE (Frishman and Argos,

1995). 4q(i) and cq(i) for the query are predicted by a newly developed

machine-learning tool called ANGLOR (Wu and Zhang, 2008a).

The seventh term Ehydro is from a hydrophobicity scoring matrix (Silva, 2008)

which encourages the hydrophobic residues (V, I, L, F, Y, W, M) to be matched

in the query and the template. For segmental threading, if both the residue

AAq(i) at the ith position of the query and the residue AAt(j) at the jth position

of the template are hydrophobic, M[AAq(i),AAt(j)] = 1; if AAq(i) and AAt(j) are

identical, M[AAq(i),AAt(j)] = 0.7; for all other cases, M[AAq(i), AAt(j)] = 0.
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Finally, the last term Eshift is a constant, c7, which is introduced to avoid the

alignment of unrelated residues in the local regions.

For the best performance, the sequence profile, structure profile, predicted

secondary structure, solvent accessibility, and torsion angles of the query

sequence are first generated using the whole-chain sequence, and then frag-

ments are excised from them for use in each segment.

Determining Parameters for SEGMER

We first examine the contribution of each of seven energy terms in Equation 2

to the performance of the SEGMER threading result. We find that that all the

terms have a positive contribution to the final threading results in the sense

that the average TM-score will decrease when we drop any one of the energy

terms (data not shown). For tuning the weighting factors of the seven energy

terms and the two gap penalty parameters, we used a grid search technique;

i.e., we divided the nine dimensional parameter space into a grid and ran

SEGMER on the validation proteins using the parameters corresponding to

each grid cell. As a result, the optimized parameters for the global dynamic

programming are c1 = 0.66, c2 = 0.39, c3 = 1.60, c4 = 0.19, c5 = 0.19, c6 =

0.31, c7 = 0.99, go = 7.01, ge = 0.55 for segments with 2 and 4 RSSEs; c1 =

0.66, c2 = 0.30, c3 = 0.50, c4 = 0.19, c5 = 0.19, c6 = 0.20, c7 = 0.99,

go = 7.01, and ge = 0.55 for segments with three RSSEs.

Dynamic Programming

We use the Needleman-Wunsch (NW) global dynamic programming algorithm

(Needleman and Wunsch, 1970) to identify the best match between a query

sequence segment and the templates. A position-specific gap penalty is em-

ployed; i.e., no gap is allowed inside an RSSE; gap opening and gap extension

penalties apply to other regions; and the end gap penalty is neglected. For

discontinuous segments, to enable the alignment of query RSSEs with

template RSSEs at different locations with a large sequence separation, the

original dynamic programming algorithm is modified so that no gap penalty

is imposed between RSSEs. An illustrative example of a discontinuous

segment sequence threaded onto a template protein is shown in Figure 2.

One of the important advantages of SEGMER over MUSTER is that

SEGMER is able to specifically identify the protein templates that only have

local structural similarity to the target. Because MUSTER has been optimized

based on global NW dynamic programming, an interesting question is whether

we could extend MUSTER by using local dynamic programming for identifying

substructure similarities. For this purpose, we tried the optimized parameters

of MUSTER with local dynamic programming based on the Smith-Waterman

(SW) algorithm (Smith and Waterman, 1981). When we apply the local-align-

ment version of MUSTER to the 144 hard protein targets in our testing set,

the average TM-score is found to be about the same as that from the global

alignment version of MUSTER on the substructure motifs (i.e., TM-score =

0.37). This means that identifying good local structural motifs cannot simply

be achieved by using local rather than global dynamic programming because

both alignments are essentially based on the whole-chain sequences.

Template Ranking and Z-Score

The whole-chain threading alignments are usually ranked by the raw alignment

score normalized by the length of the full alignment (including query and

template end gaps) (Wu and Zhang, 2008b). In the case of segmental threading

with a given number of RSSEs, the alignment length is almost constant

because the segmental alignments usually contain very few gaps. In fact, we

found by analyzing the validation data that the raw alignment score is more

sensitive to the alignment quality than the normalized score. Therefore, we

use the raw alignment score Rscore to rank the alignments. The corresponding

Z-score is calculated by

Z-score =
Rscore � hRscoreiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2

score

	
� hRscorei2

q ; (3)

where h.i denotes the average over all templates in the library.
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