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SUMMARY

One of critical difficulties of molecular dynamics
(MD) simulations in protein structure refinement is
that the physics-based energy landscape lacks a
middle-range funnel to guide nonnative conforma-
tions toward near-native states. We propose to use
the target model as a probe to identify fragmental
analogs from PDB. The distance maps are then
used to reshape the MD energy funnel. The protocol
was tested on 181 benchmarking and 26 CASP
targets. It was found that structure models of correct
foldswith TM-score >0.5 can beoftenpulled closer to
native with higher GDT-HA score, but improvement
for the models of incorrect folds (TM-score <0.5) are
much less pronounced. These data indicate that
template-based fragmental distance maps essen-
tially reshaped the MD energy landscape from golf-
course-like to funnel-like ones in the successfully
refined targets with a radius of TM-score�0.5. These
results demonstrate a new avenue to improve high-
resolution structures by combining knowledge-
based template information with physics-based MD
simulations.

INTRODUCTION

Template based modeling (TBM) represents the most accurate

method in protein structure prediction. In traditional TBM, the

structural model is built by aligning the query sequence to

a single protein template and then copying the structure informa-

tion from the template in the aligned regions (Sali and Blundell,

1993). Thus, the final structural models are often closer to the

template than to the native structure (Tramontano and Morea,

2003). In the contemporary TBM, multiple templates are often

identified through metathreading techniques (Fischer, 2003; Gi-

nalski et al., 2003; Wu and Zhang, 2007), and full-length models

are built by combining the structural fragments/restraints from

multiple templates (Cheng, 2008; Raman et al., 2009; Zhang

et al., 2010; Zhang, 2009a). Although the multiple template

approach can build models with topology closer to the native
1784 Structure 19, 1784–1795, December 7, 2011 ª2011 Elsevier Ltd
structure than individual templates, the assembled structures

often contain significant local distortions, including steric

clashes, unphysical phi/psi angles, and irregular hydrogen-

bonding (H-bonding) networks, which render the structure

models less useful for high-resolution functional analysis (Ara-

kaki et al., 2004; Keedy et al., 2009). How to refine the protein

structure closer to the native while keeping the physically mean-

ingful atomic details of local structure remains a significantly

unsolved problem in the field of protein structure predictions

(Zhang, 2009b).

Different from the template-based structure assembly simula-

tions that are usually implemented in reduced-level modeling,

molecular dynamics (MD) simulations try to relocate every

protein atom following Newton’s laws of motion (Alder andWain-

wright, 1957). Because of the advantage of direct sampling

of protein atoms as guided by physics-based force field, MD

simulations have been widely used in the atomic-level protein

structure refinements (Chen and Brooks, 2007; Fan and Mark,

2004; Floudas, 2007; Lee et al., 2001). Except for some isolated

instances, however, no systematic structural improvement has

been achieved (Lee et al., 2001). Although it is efficient for

removing steric clashes, MD simulations without restraints often

drive the structure away from the native state, especially when

relaxing the overly compact structural models, such as the

structures constructed by the recombination of multiple homol-

ogous templates (Zhang, 2007, 2009b).

Recently, Zhu et al. (2008) performed replica-exchange

molecular dynamics (REMD) simulations to refine 21 protein

structures built by comparative modeling. The authors found

that the REMD simulations could produce structures with a lower

RMSD than the initial models and the best in top five models

has a RMSD improvement of 0.24 Å in the secondary structure

region. Although encouraging, the experiment highlights a key

issue of physics-based structure refinements—that is, no atomic

potential could distinguish the near-native structures from

nonnative structures. However, the energy of the native struc-

tures was often found to be lower than that of all structure

decoys. These data indicate that the current energy landscape

is similar to a golf court, with the native state as the deepest

hole, but lacks a middle-range funnel that could guide the simu-

lation to the native state (Zhang, 2009b).

Another noteworthy observation was recently made by

Summa and Levitt (2007), who exploited atomic potentials

from AMBER99, OPLS-AA, GROMOS96, and ENCAD, on the
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Figure 1. Flow Chart of the FG-MD Protocol

The protocol includes three stages of identification of

fragment structures from the PDB, molecular dynamics

refinement simulation guided by fragmental restraints, and

final model selection.
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refinement of 75 proteins by in vacuo energy minimization. The

authors found that a knowledge-based atomic contact potential

outperformed all the traditional physics-based potentials by

moving most protein models closer to the native state, while

the physical potentials, except for AMBER99, essentially drove

the decoys away from the native. The vacuum environment

without solvent may be part of the reason for the failure of the

molecular mechanics minimization. However, this observation

demonstrated the potential of combining knowledge-based

potentials with physics-based force field to improve the funnel

shape of the energy landscape of protein folding force field

(Wroblewska et al., 2008).

In this work, we will systematically examine the ability of MD

simulations to refine protein structural models and check in
Structure 19, 1784–1795, December 7,
particular the possibility of reshaping the

middle-range funnel of physics-based energy

landscapes. We developed a Fragment-Guided

Molecular Dynamics (FG-MD) algorithm, which

combines the physical-based force field

AMBER99 (Wang et al., 2000) with knowledge-

based H-bonding and repulsive potentials.

Distance maps taken from high-resolution

experimental fragments are used as restraints

to guide the simulated annealing MD simula-

tions. FG-MD was extensively tested on both

benchmark and CASP refinement experiments

and demonstrated significant potential in

atomic-level protein structure refinements.

RESULTS AND DISCUSSION

Benchmark of FG-MD on Structural
Refinement of I-TASSER Models
The flowchart of FG-MD is showed in Figure 1,

which consists of three steps of fragment

structure identification, simulated annealing

MD refinement simulation, and final model

selection (see Experimental Procedures for

detailed descriptions).

To benchmark the performance of the FG-MD

approach, we collected a test set of 181 nonre-

dundant proteins from the PDB that are nonho-

mologous to the training proteins of our MD

force field. It includes 82 a, 28 b, and 71 a/b

single-domain proteins ranging in length from

64 to 222 residues. The initial structural models

were generated by the I-TASSER pipeline,

which represents a typical multiple template

reassembly approach (Roy et al., 2010; Zhang,

2007). Although the I-TASSER assembly sim-

ulations have drawn the threading templates
significantly closer to the native (with the average RMSD

reduced by 1.15 Å and average TM-score increased by 12%

compared to the best threading template), the structure models

were found to be overly compact and have considerable unphys-

ical distortions in the local structures. On average, there are 50

steric clashes between the heavy atoms of the models, and

only 48.07% of native H-bonds are retrieved on the I-TASSER

models (Table 1).

To examine in detail the effect of various energy terms and

spatial restraints, we split FG-MD into five different runs:

1) MD: Simulated annealing MD simulations using AMBER99

force field and a knowledge-based Ca repulsive potential

(Equations 3 and 4);
2011 ª2011 Elsevier Ltd All rights reserved 1785



Table 1. Summary of FG-MD Refinement on a Benchmark Set of 181 Proteins

Method GDTa TMb Rmsdc HBd No. of Clashe

I-TASSER 0.4901 0.7163 4.971 0.4807 50

MD 0.3746 0.6379 5.721 0.3668 2

MD+HB 0.4035 0.6588 5.552 0.5312 2

MD+HB+DRM 0.4908 0.7164 4.980 0.5194 0

MD+HB+DRM+DRT 0.4916 0.7167 4.977 0.5240 2

MD+HB+DRM+DRFG 0.4946 0.7173 4.992 0.5250 3

MD+HB+DRM+DRT+DRFG 0.4971 0.7187 4.940 0.5340 2
a Average GDT-HA score.
b Average TM-score.
c Average Ca RMSD.
d Average hydrogen-bonding score.
e Average number of steric clashes between heavy atoms.
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2) MD+HB: MD simulations with H-bonding optimization

guided by a knowledge-based HB potential (Equation 2);

3) MD+HB+DRM: MD+HB simulation guided by the distance

restraints taken from the initial I-TASSERmodel (First term

of Equation 1);

4) MD+HB+DRM+DRT: MD+HB+DRM simulation with addi-

tional restraints taken from global template searched by

TM-align from the PDB (second term of Equation 1);

5) MD+HB+DRM+DRFG:MD+HB+DRMsimulationwithaddi-

tional restraints taken from structural fragments searched

by TM-align from the PDB (third term of Equation 1); and

6) MD+HB+DRM+DRT+DRFG: MD+HB+DRM simulation

with additional distance restraints taken from both global

templates and local structural fragments searched from

the PDB.

Table 1 summarizes the average results on the 181 target

proteins. First, the MD simulations show an apparent power for

removing the steric clashes between all heavy atoms (with the

average number of clashes per protein reducing from 50 to 2),

because of the strong repulsive term of Lennard-Jones potential

in AMBER99 force field and the knowledge-based Ca repulsive

term. However, the quality of the global topology as measured

by GDT-HA (Zemla, 2003) and TM-score (Zhang and Skolnick,

2004) was considerably degraded (i.e., GDT-HA reduces by

30.8% and TM-score by 12.3%; the HB-score is also reduced

by 31%). The RMSD of the initial models was increased by

0.75 Å. We note that running MD simulations without the

knowledge-based Ca repulsive potential results in models with

similar RMSD, GDT-HA, TM-, and HB-scores. But the additional

repulsive potential significantly speeds up the convergence of

the MD relaxing simulations.

The MD+HB approach was formulated by using backbone

H-bonding optimization with a newly developed knowledge-

based HB potential (Figure 8). Because part of the native

hydrogen-bonding network was recovered, the corresponding

HB-score increases by 45% (from 0.3668 to 0.5312). The GDT-

HA and TM-scores are also increased by 7.7% and 3.2%,

respectively, and RMSD decreases by 0.17 Å, which demon-

strate a correlation between the hydrogen-bonding network

and the global topology score, especially for beta-proteins,

because of the long-range H-bonding between beta strands.
1786 Structure 19, 1784–1795, December 7, 2011 ª2011 Elsevier Ltd
Although the models were improved by MD+HB, the global

topology was still further away from the native than the initial

models, as judged by the GDT-HA and TM-score and RMSD.

We therefore applied the distance maps collected from the

starting models to guide the MD simulations with the purpose

of constraining the simulation near the initial structures. Indeed,

the restraints improved GDT-HA, TM-score, and RMSD to a

similar level of the starting models (GDT-HA, 0.4901 vs.

0.4908; TM-score, 0.7163 vs. 0.7164, and 4.971 vs. 4.980 Å).

However, the HB-score was slightly lower than that by MD+HB

because of the bending to the starting models, which have a

distorted H-bonding network.

In the MD+HB+DRM+DRT simulation, we added the distance

restraints taken from the high-resolution PDB structures that

are closest to the initial model, as searched by the structure

alignment program TM-align (Zhang and Skolnick, 2005).

Because the experimental structures have ideal local structures

with standard H-bonding networks, we anticipated that the

inclusion of the template-based restraints could improve the

quality of the local structures; this was indeed verified by

the increased HB-score and a slight improvement in the TM-

and GDT-HA scores and RMSD.

In the MD+HB+DRM+DRFG simulation, we split the se-

quences into smaller fragments and used the substructures of

the initial model as probes to search for high-resolution template

structures from the PDB. The distance map restraints taken

from the fragmental templates were then incorporated into the

MD simulations. Overall, the restraints from local fragments

outperformed those from global templates, and better TM-score,

GDT-HA, RMSD, and HB-scores were achieved in the final

model structures.

Finally, in the MD+HB+DRM+DRT+DRFG, we combined the

distance restraints taken from both global templates and local

structural fragments. The models generated by this approach

have achieved the highest TM-score, GDT-HA and HB-scores,

and lowest RMSD among all the simulations (Table 1).

In Figures 2A–2C, we present scatter plot distributions of

GDT-HA, TM-score, and HB-score improvements versus TM-

score of the starting models. Although the points were scattered

both below and above the dashed reference line, there were

obviously more proteins with improved scores than that with

deteriorated ones. The average improvement was showed
All rights reserved



Figure 2. Scatter Plot of the FG-MD Improvements versus TM-Score of Initial Models

(A–C) GDT-HA (A), TM-score (B), and HB-score (C) are shown.

(D) AMBER99 (black circles) and FG-MD (gray squares) energy versus TM-score for 773 200 refined models by MD and FM-MD simulations. The fitting curves

are connection of the medians of the 10 lowest-energy models in each of the TM-score bins (0.1-0.2, 0.2-0.3, .). See also Figures S1 and S2.
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in the solid line in each plot. For 181 benchmarking targets, 71%

(128/181) of the targets have aGDT-HA improvement, 65% (117/

181) of the targets have a TM-score improvement, and 92%

(167/181) of the targets have a HB-score improvement. A

detailed histogram of the score difference is showed in Figure S1

(available online), which is available with this article online.

Although the quality improvement of local structures demon-

strated by the HB-score seems to occur on all ranges of protein

models, the most significant improvement of GDT-HA and TM-

score was observed for the models of good starting structures

(e.g., TM-score >0.5). For the models of incorrect topology

(e.g., TM-score <0.5), the GDT-HA and TM-score improvements

by FG-MD are less pronounced. This may indicate that the FG-

MD force field landscape has a sensitive funnel shape in the

region of TM-score >0.5; within the region of TM-score <0.5,

however, the correlations of energy and TM-score are much

weaker, and the influence of local geometry repacking on the

global topology refinement therefore tends to be randomized.

As an illustration, in Figure 2D we calculated the AMBER99

and FG-MD energy force fields according to the models from

a successfully refinement example of 2bwfA, which had the

TM-score improved from 0.798 to 0.804. For this target, 77

decoy models with TM-score ranging from 0.17 to 0.84 were

taken from the I-TASSER simulation trajectory; 200 refinement

models were then generated by MD and FG-MD simulations

separately for each of the 77 initial models. The corresponding

AMBER99 (black circles) and FG-MD (red squares) energy

potentials for the 77 3 200 refined models are plotted versus

the TM-score. As shown by the fitting curves (the median of

the 10 lowest energy models per TM-score bin), there was

almost no correlations between AMBER99 and the global

topology. After the introduction of the better fragment-based

distance restraints (with a DMRMSD 0.036Å lower than that of
Structure 19, 1784–17
the initial model), there appears an apparent funnel-like shape

starting from TM-score �0.5 in the FG-MD energy landscape,

which is critical to the success of structure refinement of this

example.

Although encouraging, the funnel-like landscape was not

always achieved in the FG-MD force field even when TM-score

of the initial model is >0.5. The reshaping of energy landscape

was found to strongly rely on the quality of fragment templates,

although other energy terms in FG-MDcontribute aswell. Among

the successfully improved targets, the majority of the targets

were found to have a funnel-like landscape similar to Figure 2D

(with lower energy in thenear-native regions). For thedeteriorated

targets, most of targets have still an energy landscape that lacks

energy-TM-score correlations. In Figure S2, we present such an

example from 1z3e, where the DMRMSD of the best fragment

template is 0.1 Å worse than the initial model and the FG-MD

energy landscape shifts the lowest energy away from the native

state, compared with the AMBER99 potential. Consequently,

the TM-score and GDT-HA of the initial model were deteriorated

by 0.0074 and 0.0089, respectively, in this example.

Why Can FG-MD Refine the Global Topology
of the Protein Models?
Except for the adjustment of local structures and H-bonding

networks, the major driving force for the global structural refine-

mentof FG-MD is thedistancemap restraints taken fromthe initial

model, the global and fragmental templates as searched by TM-

align from the high-resolution PDB structures. Generally, the

distance maps from the initial models do not directly contribute

to improving the topology of protein models because these

restraints do not contain new information to the initial structures.

In Figure 3A, we plot the histogram of DTM-scores that is

defined as the TM-score of the TM-align templates subtracting
95, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1787



Figure 3. Topology and Restraint Accuracy from Global and Fragment Templates

(A) Histogram of DTM-score of global templates (black) and fragmental templates (gray).

(B) Histogram of DDMRMSD of distance map restraints taken from the global templates (black) and fragmental templates (gray). See also Figure S3.
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the TM-score of the initial models, where a positive DTM-score

value indicates a better quality of template structures than the

initial models. Because the initial models were used as probes

in the template search, most of the templates are closer to the

initial models than to the native (i.e., there are more templates

with a TM-score lower than that of the initial models). These

data are consistent with the observation we obtained in the

previous study (see Figure 4A in Zhang and Skolnick, 2005).

However, because there are much more appropriate fragmental

templates than the global ones for the given initial models, we

obtained a better quality of fragment templates (see the red

bars in Figure 3A). Overall, 24% of fragment templates have a

higher TM-score than the corresponding initial models, and

only 4% of global templates do so.

In Figure 3B, we present the distribution of DDMRMSD, which

is defined as the distance map root-mean-squared-deviation

(DMRMSD, Equation 6) from initial models subtracting the

DMRMSD from the templates, where a positive DDMRMSD

indicates a more accurate distance map restraint from tem-

plates than that from initial models. Again, most of the restraints

(90%) from the global template have a lower accuracy than those

from the initial templates. Interestingly, there are slightly more

distance restraints from the fragment templates (52%) that

have a better accuracy than that from the initial models. Because

the average TM-score of the fragment templates to the native is

still lower than that of the initial models, this excess in distance

maps is probably attributed to the more proteinlike and regular

secondary structures in the experimental structures, which

constitutes the major driven force for the FG-MD to refine the

high-resolution protein structures.

To examine the detailed data in different categories, we

split the targets into ‘‘successful’’ (TM-score increased after

refinement) and ‘‘failed’’ (TM-score decreased after refinement

simulation) cases, and compared the restraints from fragment

and global templates separately, as shown in Figure S3. For

the successful cases, 56% (65/117) of the targets have better

fragments (DDMRMSD > 0) and 10% (12/117) of the targets

have better global templates (DDMRMSD > 0). For failed cases,

only 44% (28/64) of the targets have better fragment

(DDMRMSD > 0) and 2% (1/64) of the targets have better global

templates (DDMRMSD > 0). On average, the fragment templates
1788 Structure 19, 1784–1795, December 7, 2011 ª2011 Elsevier Ltd
are always better than global templates for both successful

and failed cases. However, only in the successful cases, the

quality of restraints outperformed that from initial models.

In Figure 4, we look into the details of a typical refinement

example from the Escherichia coli 6-hydroxymethyl-7,8-dihy-

dropterin pyrophosphokinase (PDB ID: 1eqmA). Figures 4A

and 4B are the long-range distance maps (ji-jj > 10) from the

initial model and that from fragmental templates, respectively,

versus the distance map of the native structure, where only the

residue pairs with a distance < 8Å are presented. Although all

199 restraints from the initial model appeared in that from the

fragment structures, there were 57 new distance restraints

predicted only by fragments (circles). If we define a correct

distance restraint as that with jDij � DN
ij j< 0:5 Å, where Dij and

Dij
N are distances from model and native, there are 91 and 188

correct restraints from initial model and fragmental templates,

respectively. Thus, the fragment-based restraints outperform

the initial models in both accuracy (188/256 vs. 91/199) and

coverage. As a result, the GDT-HA, TM-, and HB-scores of the

initial models were increased from 0.573, 0.791, and 0.391,

respectively, to 0.6, 0.796, and 0.529, respectively (Figure 4C).

Figure 5 shows three additional, typical examples with major

improvements from loop, helix, and strand regions, respectively.

For 1elw, a high-quality fragment at the loop region (19I-66L)

with a DMRMSD of 0.228 Å drew the RMSD/DMRMSD of the

corresponding region in the initial model from 0.439/0.306 Å

to 0.365/0.211 Å, which results in the GDT-HA and TM-scores

of the global model increasing from 0.686 and 0.885 to 0.720

and 0.898, respectively. Similar improvement was observed

for the other two proteins with PDB ID 1hnl and 1djr, one with

improvements occurring in the helical region and another in the

stranded region, both attributing to the better fragmental

templates identified in the corresponding regions (rows 2 and 3

in Figure 5).

Performance of FG-MD on CASP8 Refinement Targets
The structure refinement category was a new addition to CASP

since CASP8 (MacCallum et al., 2009). In this category, predic-

tors were given starting models that had been generated by

the CASP structural prediction servers and judged by organizers

to be among the best for each targets, and requested to refine
All rights reserved



Figure 4. An Example of FG-MDRefinement

on 1eqm

(A) Long-range distance map from initial model

versus that from native (ji-jj > 10).

(B) Long-range distance map from fragments

versus that from native. Only the distances below

8 Å are shown. Distance restraints with error below

0.5 Å are shown in red and others in black spots.

The new restraints from fragments, which are not

in the initial model, are highlighted by circles.

(C) Superposition of the refined model (blue) and

the initial model (green) on the native structure

(red). The black circles highlight the regions of

more pronounced structural improvements.
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the models in a blind mode. We tested FG-MD on refining all the

12 target proteins from the CASP8 refinement experiment.

Although the FG-MD run was performed after the CASP8, we

note that all templates proteins deposited in PDB after CASP8

were excluded to ensure that we are in strictly the same

modeling condition as the CASP8 blind predictors.

The FG-MD refinement result is summarized in the upper part

of Table 2 together with the best five groups as ranked by the

cumulative GDT-HA score of refined models for all the 12

models. A full list of 25 groups is given in Table S1. As illustrated

in the overall results, FG-MD is the only method that could drive

the initial protein models closer to the experiment structure

according to both the cumulative GDT-HA and TM-scores and

the average RMSD. Because some groups submitted fewer

proteins, we also calculated the average TM-score and GDT-

HA on the submitted proteins and found that none of the

CASP8 groups have a TM-score, GDT-HA, or RMSD better

than the initial models, which indeed highlights the difficulty in

refining global topology of protein models.

Overall, the GDT-HA and TM-score are 1.2% and 1.6% higher

and RMSD is 0.164 Å lower than that by the second best LEE

group. The HB-score of the FG-MD models was ranked the
Structure 19, 1784–1795, December 7, 2011 ª
third position following SAM-T08-human

and LevittGroup. The average number of

steric clash is 0.1, lower than the models

from all other top five groups. A compar-

ison of the FG-MD models with the initial

models for all 12 CASP8 protein targets

are listed in Figure 6A, where FG-MD

improved the GDT-HA and TM-scores in

nine of 12 cases and the HB-score in 10

of 12 cases. Again, the most significant

improvements were observed in the

region of TM-score larger than 0.5.

In the CASP8 experiment (MacCallum

et al., 2009), the assessor also used the

MolProbity score (Chen et al., 2010) to

count for the physically unfavorable steric

overlaps, rotamer, and Ramachandran

outliers. We listed the MolProbity score

in the last column of Table 2 and Fig-

ure 6B. FG-MD improves the MolProbity

score of the initial models for all but two

targets with an average reduction by 5%.
In Figures 6C and 6D, we present two representative exam-

ples of the CASP8 refinements. For Target TR432, the improve-

ments were scattered among the entire sequence, including

loop and regular secondary structures, which resulted in a

3.2% increase in GDT-HA, a 0.9% increase in TM-score, an

11.1% increase in HB-score, and an 8.8% increase in MolPro-

bity score (Figure 6C). For TR461, however, the improvement

was mainly in the beta strand region, which resulted in an

increase of GDT-HA, TM-score, and HB-score by 2.0%,

0.2%, and 8.7%, respectively (Figure 6D).

Blind Test of FG-MD in CASP9 Refinement Experiment
We participated (as ‘‘ZHANG’’) in the structure refinement

section in the CASP9 experiment, which contained 14 protein

targets with length from 69 to 159 residues. Two, five, and seven

targets belong to a, b, and ab proteins, respectively. A summary

of the refinement results for the top five groups is listed in the

lower part of Table 2 according to the cumulative GDT-HA score.

A complete list of the CASP9 groups is listed in Table S2. We

note that the algorithm generating the ZHANG models in

CASP9 was not identical to the FG-MD reported in this work

because the models submitted in CASP9 were further refined
2011 Elsevier Ltd All rights reserved 1789



Figure 5. Three Examples of Refinement by FG-MD Simulations in the Benchmark Test Set

The superposition of fragmental template (Column 1), initial model (Column 2), and refined model (Column 3) on the experimental structure in the fragmental

region are shown. Column 4 is the superposition of the full-length refinedmodel and initial model on the native. The examples are from 1elw (Row 1), 1hnl (Row 2),

and 1 djr (Row 3). The black dotted circles highlight the regions of more pronounced structure improvements.
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by MODELER (Sali and Blundell, 1993), where the FG-MD

refined model was used as the single template and then a simple

AUTOMODEL step was performed in MODELER. The reason for

us to use MODELER was that it could slightly improve the ro-

tamer torsion angles according to our benchmark test. However,

we found that MODELER refinements could result in a significant

increase of H-atom clashes and therefore deteriorated the

MolProbity score. Therefore, we modified the FG-MD algorithm

without using MODELER in this work. In Table 2, we also listed

the models by the current version of the FG-MD program. All

the FG-MD refined models for the CASP9 targets, together with

that for CASP8 targets and the 181 I-TASSER models, were up-

loaded to http://zhanglab.ccmb.med.umich.edu/FG-MD/.

The groups in the lower part of Table 2 were ranked according

to the cumulative GDT-HA score of the first model. Only two

groups, ZHANG and SEOK in CASP9, could refine the initial

structures on the basis of GDT-HA and TM-scores. However,

both ZHANG and SEOK models have the MolProbity score

higher than those of the initial models, indicating a deterioration

of the local structure qualities. In particular, SEOK models

showed a significant number of heavy atomic overlaps (Column
1790 Structure 19, 1784–1795, December 7, 2011 ª2011 Elsevier Ltd
7). After removing the MODELER refinement step, FG-MD

improves the MolProbity score by 39% compared to ZHANG,

which is 15% lower than that of the initial models. Overall, the

FG-MD models demonstrate improvement in all aspects of

GDT-HA, TM-score, RMSD, HB-score, heavy atom clash, and

MolProbity score.

In Figures 7A–7D, we present the improvement of GDT-HA,

TM-score, HB-score, and MolProbity score over the initial

models for all individual targets by ZHANG and FG-MD. Again,

the results for ZHANG and FG-MD are similar for GDT-HA,

TM, and HB-scores, but FG-MD without the MODELER step

reduces significantly the MolProbity score over the ZHANG

models. There are 11, 10, 10, and five of 14 cases, respectively,

in which the ZHANG models show improvement over the initial

models according to GDT, TM, HB, and MolProbity scores,

and the FG-MD models do so in 12, 10, five, and 13 cases,

respectively.

Figures 7E and 7F show two typical examples of ZHANG

models in CASP9. For TR614, the major improvement is in

region 82N-91E, although minor improvement were scattered

along the whole chain (Figure 7E), which resulted a final model
All rights reserved
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Table 2. Results of FG-MD and the Top Five Groups in CASP8 and CASP9 Experiments

Group No. Targa GDTb TMc Rmsdd HBe No. of Clashf Molprobg

CASP8 FG-MD 12 6.979 9.362 2.953 6.758 0.1 2.575

NULLh 12 6.898 9.316 3.004 6.290 27.9 2.706

LEE 12 6.860 9.195 3.117 6.624 18.4 2.613

LevittGroup 12 6.701 9.160 3.047 6.730 5.3 2.875

SAM-T08-human 12 6.523 9.084 3.056 6.773 0.7 2.762

YASARARefine 12 6.407 9.155 3.105 6.853 0.3 1.071

Bates_BMM 12 6.167 8.734 3.359 6.060 2.9 2.738

CASP9 FG-MD 14 7.387 10.386 4.331 6.928 0.0 2.183

ZHANG 14 7.365 10.396 4.338 7.084 0.0 3.042

SEOK 14 7.359 10.399 4.259 6.819 15.8 3.436

NULLh 14 7.319 10.368 4.344 6.867 3.7 2.521

FAMSD 14 7.284 10.348 4.309 6.790 1.1 2.550

KNOWMIN 14 7.194 10.182 4.440 7.590 1.2 2.179

TASSER 14 7.164 10.259 4.740 6.814 47.4 3.160

See also Tables S1 and S2.
aNumber of targets.
bCumulative GDT-HA score of the first models.
cCumulative TM-score of the first models.
d Average RMSD of the first models to the native structure (Å).
e Cumulative hydrogen-bonding score of the first models.
f Average number of heavy atom steric clashes in the first model.
g Average MolProbity score of the first model.
h The initial models for the CASP refinement experiment.
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of GDT-HA score 0.535, which was 1.7% higher than in the

initial model. For the second target TR530, the major refinement

occurs at 49R-57E and 108D-115K, which results in a final

model of GDT-HA score 0.709, which was 2.6% higher than in

the initial model (Figure 7F).

Conclusions
Atomic-level protein structural refinement represents a signifi-

cantly unsolved problem in protein structure prediction. Most

of the current methods based on MD simulations drive the

structural models away from the native state, mainly because

of the lack of long-range correlation between the topology

and the energy of the physics-based atomic potentials

(Summa and Levitt, 2007; Zhang, 2009b; Zhu et al., 2008).

The multiple-template-based homology modeling has the

potential to improve the structure of the threading templates,

and a fundamental issue is that the local structures of the

resultant model can be seriously distorted (Fischer, 2003;

Zhang, 2007). In this work, we developed a protocol of FG-

MD for high-resolution and atomic-level protein structure

refinements, where spatial restraints from fragmental templates

were exploited to reshape the energy funnel of the simulated

annealing MD simulations. The knowledge-based H-bonding

potential is incorporated for improving the local structure

refinements.

FG-MD was tested in a large-scale set of 181 benchmark

proteins with initial models generated by the I-TASSER template

structural reassembly approach. It was found that the distance

map restraints extracted from fragmental templates had a sig-

nificant higher accuracy than those obtained from the global
Structure 19, 1784–17
templates; the accuracy was also higher on average than that

from the initial models. As a result, progressive improvements

were observed when H-bonding energy term and the distance

map restraints were separately introduced to guide the refine-

ment simulations. The average GDT-HA score of the FG-MD

models was 0.7 units higher than that of the initial models, and

RMSD was reduced by 0.031 Å. The majority of the improve-

ments happened for the initial models of correct topology

(i.e., TM-score > 0.5). This corresponds to a funnel-shaped

improvement of the physics-based energy landscape from a

golf-course-like shape to a funnel-like shape with an approxi-

mate radius of TM-score of 0.5, which had been seen in most

of the successfully refined targets. As part of local structure

measurements, the H-bonding score of the FG-MD models

increased by 12%, and the number of steric clashes was

reduced from 50 to 2, mainly because of the introduction of

the H-bonding and repulsive energy terms in the MD

simulations.

The FG-MD method was also tested in the blind test of CASP

refinement experiments, where starting models were generated

by a variety of structure assembly methods. FG-MD was among

the very few methods that could consistently bring the initial

models closer to the native structure as assessed by the

improved GDT-HA and TM-scores. The local structural quality

of the H-bonding score, the number of steric clashes, and the

MolProbity score were also significantly improved, compared

to the initial models. These data demonstrate a promising

approach of atomic protein structure refinements by using

analogical fragment templates from other experimentally solved

protein structures.
95, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1791



Figure 6. FG-MD Structural Refinement Results on CASP8 Targets

(A) Scatter plot of improvements on TM-score, GDT-HA, and HB-score.

(B) Scatter plot of MolProbity improvements.

(C) Structural superposition of the initial model (green) and refined model (blue) on the native structure (red) for Target TR432.

(D) Structural superposition of the initial model (green) and refined model (blue) on the native structure (red) for Target TR461. The dotted circles highlight

the regions of more pronounced structural improvements.
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EXPERIMENTAL PROCEDURES

FG-MD Refinement Protocol

The FG-MD protocol is showed in Figure 1. Starting from a target protein

structure, the sequence was split into separate secondary structure elements

(SSEs). The substructures of every three consecutive SSEs, together with the

full-length structure, were used as probes to search through a nonredundant

PDB library by TM-align (Zhang and Skolnick, 2005) for structure fragments

closest to the target. The top 20 template structures with highest TM-scores

(Zhang and Skolnick, 2004) were used to collect spatial restraints. Simulated

annealing molecular dynamics simulations were implemented using modified

LAMMPS (Plimpton, 1995), as guided by the distance map restraints and

a knowledge-based hydrogen-bonding potential. The final refined models

were selected on the basis of the sum of Z-score of hydrogen bonds,

Z-score of the number of steric clashes, and Z-score of FG-MD energy. The

procedure is fully automated, and the running time for each refinement target

is less than 2 hr at a 2.4 GHz CPU. The FG-MD server is freely available at

http://zhanglab.ccmb.med.umich.edu/FG-MD.

FG-MD Force Field

The FG-MD potential contains four energy terms.

Distance Map Restraints

The Ca distance maps were collected from three sources of initial models,

global structure templates, and fragmental structure templates. The Ca

distance restraint potential is written as:

EðrijÞ=
�
k1

�
rij � r1ij

�2

+ k2

�
rij � r2ij

�2

+ k3

�
rij � r3ij

�2

rij%15

0 rij>15
; (1)

where rij is the distance between ith and jth Ca atoms. r1ij , r
2
ij , and r3ij are the

distance maps from the initial model, global structure template, and frag-

mental template, respectively. k1, k2, and k3 are the corresponding force

constants with the value equal to 0.5, 0.5, and 2.0 Kcal/mole, respectively.
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TM-align was used to build the structural alignment between the template

structures and the initial model. We found that restraints from residues in

close distance are most efficient and thus we only considered the distance

map with rij below 15 Å from the top 20 templates. The force parameters

(and others shown below) were decided on the performance of FG-MD on

an independent training set of proteins.

Explicit Hydrogen Binding

The definition of backbone hydrogen bond is illustrated in Figure 8A. A knowl-

edge-based, explicit H-bonding potential is constructed as:

EHBðdij ;a; bÞ=
�
k4ðdij � d0Þ2 + k5ða� a0Þ2 + k6ðb� b0Þ2 dij%3:0

0 dij>3:0
; (2)

where dij is the distance between hydrogen of the donor and oxygen of the

acceptor. a is the angle of N-H-O, and b is the angle of C-O-H (Figure 8A).

The standard values of the H-O distance, N-H-O, and C-O-H angles are

derived from the statistics average of 1,383 nonredundant, high-resolution

experimental structures (see Figures 8B–8D). This protein set was constructed

with the PISCES server (Wang andDunbrack, 2003), with a percentage identity

cutoff 20%, a resolution cutoff 1.6 Å, and an R-factor cutoff 0.25 Å. The

average result is d0 = 1.95 ± 0.17 Å, a0 = 160.0 ± 12.2�, and b0 = 150.0 ±

17.5�. Because the fluctuations of the experimental values are relatively

small, we took the average value with a harmonic restraint for the H-bonding

in Equation 2. K4, k5, and k6 are the force constant with values equal to 2.0,

0.5, and 0.5, respectively. Only short-range H-binding potential is considered,

with a cutoff of dij % 3Å.

Repulsive Potential

The Ca repulsive potential was designed to rapidly relax compact structural

models with severe Ca clashes, as follows:

EðrijÞ=
�
kð3:6� rijÞ rij%3:6

0 rij>3:6
; (3)

where the force constant k = 200 Kcal/mole.
All rights reserved
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Figure 7. Structural Refinement Results on

the CASP9 Targets

(A) GDT-HA score improvements.

(B) TM-score improvements.

(C) HB-score improvements.

(D) MolProbity score improvements.

(E) Structural superposition of the initial model and

final model on the native structure for Target

TR614.

(F) Structural superposition of the initial model

and final model on the native structure for

Target TR530. The black dotted circles highlight

the regions of more pronounced structure

improvements.
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AMBER99 Force Field

The standard AMBER99 force field (Wang et al., 2000) was used for local

conformation stiffness:

EAmber =
X
bonds

Krðr � reqÞ2 +
X
angles

Kqðq� qeqÞ2 +
X

dihedrals

Vn

2
½1+ cosðnf� gÞ�

+
X
i<j

"
Aij

R12
ij

� Bij

R6
ij

+
qiqj

εRij

#
;

(4)

where r, q, and 4 are bond length, bond angle, and torsion angle, respectively;

and req, qeq, and g are the corresponding equilibrium values. Kr, Kq, and Vn are

the force constants for bond length, bond angle, and torsion angle, respec-

tively. Aij and Bij are the Lennard-Jones parameters; qi and qj are the partial

charge of atom i and j. Rij is the distance between atom pair i and j.

Metrics for Structure Assessments

Accuracy of Global Topology

Although the root-mean-squared deviation (RMSD) between two structures

was often used to measure the modeling accuracy, the value can be very

sensitive to the local structural variations. In this work, we mainly used GDT-

HA score (Zemla, 2003) and TM-score (Zhang and Skolnick, 2004) to evaluate

the global topology refinement of the structural models. The GDT-HA score

counts the average percentage of residues with Ca distance from the native

below 0.5, 1, 2, and 4 Å, respectively, after the optimal structure superposition.

The TM-score is defined as follows:
Structure 19, 1784–1795, December 7, 2011
TM� score=Max

2
664 1

LN

XLT
i =1

1

1+

�
di=d0

�2

3
775; (5)

where LN is the length of the native structure, LT is

the number of common residues appearing in both

compared structures, di is the distance between

the ith pair of residues, and d0 is a scale to

normalize the match difference. Both GDT-HA

and TM-score lie in [0, 1] with higher values indi-

cating better accuracy. However, the GDT-HA

score focuses more on the accuracy of local struc-

ture (d < 4 Å), and the TM-score counts the resi-

dues of all structures. Another difference is that

TM-score is length independent, with TM-score >

0.5 indicate proteins of the same fold (Xu and

Zhang, 2010). Historically, the GDT-HA score was

used as the standard topology measurement for

high-resolution protein structure prediction and
refinements in CASP experiments (Cozzetto et al., 2009; Keedy et al., 2009;

Kopp et al., 2007; MacCallum et al., 2009).

Accuracy of Distance Map

The RMSD of Ca distance map, called DMRMSD, is introduced to evaluate the

accuracy of distance restraints:

DMRMSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i =1

h�
Di � DN

i

	2is
; (6)

where Di is the ith distance restraints collected from structural models and

DN
i is the corresponding distance on the native structure. n is the total number

of collected distance restraints.

Hydrogen-Bonding Score

The accuracy of the hydrogen-bonding network (or secondary structures) of

the protein models is evaluated by the HB-score:

HB� score=
Number of consensus hydrogen bonds in model and native

Number of hydrogen bonds in the native structure
:

(7)

The hydrogen bonds in full atomic structures are defined by HBPLUS

(McDonald and Thornton, 1994).

Steric Clashes

Tocount theunphysical overlapsof themodel structures,wedefineastericclash

between two heavy atoms if the distance is less than 80% of the sum of Van

der Waals radius, which is taken from Amber99 force field (Cornell et al., 1995).
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Figure 8. The Illustration and Statistics of

the H-Bonding Potential Used in FG-MD

(A) Definition of H-O distance and inner angles for

hydrogen-bond.

(B) Histogram of H-O distance.

(C) Histogram of the N-H-O angle.

(D) Histogram of the H-O-C angle.

All histograms were obtained from a set of

1,383 non-redundant, high-resolution experi-

mental structures.
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MolProbity Score

The MolProbity score is calculated as (Chen et al., 2010):

MolProbity� score=0:4263 lnð1+ clashscoreÞ
+ 0:333 lnð1+maxð0; rota out� 1ÞÞ
+ 0:253 lnð1+maxð0; rama iffy� 2ÞÞ+ 0:5;

(8)

where clashscore counts the number of unfavorable steric overlaps R 0.4 Å,

including H-atoms, and rota_out and rama_iffy are the percentages of the

outliers of the side-chain rotamers and the backbone torsion angles, respec-

tively. Lower MolProbity scores indicate more physically realistic models.
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