
Structural bioinformatics

LS-align: an atom-level, flexible ligand

structural alignment algorithm for

high-throughput virtual screening

Jun Hu1,2, Zi Liu1, Dong-Jun Yu1,* and Yang Zhang2,*

1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094,

China and 2Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor,

MI 48109-2218, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on July 31, 2017; revised on December 17, 2017; editorial decision on February 12, 2018; accepted on February 13, 2018

Abstract

Motivation: Sequence-order independent structural comparison, also called structural alignment,

of small ligand molecules is often needed for computer-aided virtual drug screening. Although

many ligand structure alignment programs are proposed, most of them build the alignments based

on rigid-body shape comparison which cannot provide atom-specific alignment information nor

allow structural variation; both abilities are critical to efficient high-throughput virtual screening.

Results: We propose a novel ligand comparison algorithm, LS-align, to generate fast and accurate

atom-level structural alignments of ligand molecules, through an iterative heuristic search of the target

function that combines inter-atom distance with mass and chemical bond comparisons. LS-align con-

tains two modules of Rigid-LS-align and Flexi-LS-align, designed for rigid-body and flexible align-

ments, respectively, where a ligand-size independent, statistics-based scoring function is developed to

evaluate the similarity of ligand molecules relative to random ligand pairs. Large-scale benchmark tests

are performed on prioritizing chemical ligands of 102 protein targets involving 1 415 871 candidate

compounds from the DUD-E (Database of Useful Decoys: Enhanced) database, where LS-align

achieves an average enrichment factor (EF) of 22.0 at the 1% cutoff and the AUC score of 0.75, which

are significantly higher than other state-of-the-art methods. Detailed data analyses show that the

advanced performance is mainly attributed to the design of the target function that combines structural

and chemical information to enhance the sensitivity of recognizing subtle difference of ligand mol-

ecules and the introduces of structural flexibility that help capture the conformational changes induced

by the ligand–receptor binding interactions. These data demonstrate a new avenue to improve the

virtual screening efficiency through the development of sensitive ligand structural alignments.

Availability and implementation: http://zhanglab.ccmb.med.umich.edu/LS-align/

Contact: njyudj@njust.edu.cn or zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computer-based virtual screening (VS) becomes increasingly preva-

lent in drug discovery, and has been exploited as a valuable and eco-

nomic tool to identify new lead molecules, complementary to the

expensive experimental screening. The computational VS methods

can be grouped into two categories according to the information

they use: protein-centric methods and ligand-centric methods

(Roy and Skolnick, 2015). Starting from protein structures, the
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protein-centric methods can often achieve a better screening per-

formance, as they enable the explicit evaluation of protein-ligand

binding interactions through docking (Forli et al., 2016; Patel et al.,

2017). Nevertheless, the performance highly depends on the quality

of the receptor structure, as low-resolution models from protein

structure predictions can often degrade the accuracy of the process

when the experimental structure is not available (Zhang, 2009).

In addition, they suffer from the inherent limitations of the

applied protocols.

On the contrary, without relying the structure of proteins, the

ligand-centric methods commonly employ known ligands as a seed

to identify potential binders by 2D or 3D structural similarity com-

parisons (Eckert and Bajorath, 2007; Shang et al., 2017). In the 2D

structural virtual screening methods, a small molecule is generally

represented as a vector (e.g. 2D fingerprint) with entries indicating

the presence or absence of molecular features. These 2D-based

methods are widespread in this field, as they can fast and easily fig-

ure out the similar active molecules. However, both molecule size

and structural complexity can negatively impact the screening per-

formance of these methods (Holliday et al., 2003; Willett, 2006).

Compared to the 2D methods, the 3D-structure based ligand align-

ment programs can capture the physical and functional features

required for the biological interaction, which is essential for scaffold

hopping to infer new ligands starting from existing ligands

(Hu et al., 2017; Quintus et al., 2009). The ability of scaffold hop-

ping can enhance the VS performance by using the structural and

physicochemical information to reduce the false negative rates.

Moreover, the programs can provide useful insights for bioisostere

replacement, cross-reactivity of existing drugs and potential

off-target interactions (Jennings and Tennant, 2007). Although

3D-based ligand-alignment methods are commonly more time-

consuming than 2D-based methods, with the increase of compu-

tational power and the improvement of method efficiency, the

time cost is becoming an increasingly less critical issue in their

applications.

A variety of 3D-based methods have been developed for aligning

small ligand molecules, which are mainly built on three different

principles, including molecular interaction field-based (Cheeseright

et al., 2008), pharmacophore-based (Sperandio et al., 2007) and

shape-based alignment methods. Among them, the shape-based vir-

tual screening methods, which seek to maximize the shape overlap

between a pair of small molecules, have become particularly popular

in recent studies. Most of the shape-based approaches use atom-

centered, smooth Gaussian functions to model molecular volumes,

due to the fact that it helps to gain rapid overlay. For example,

Rapid Overlay of Chemical Structures (ROCS), whose source code

is not yet open, employs molecular volumes defined by a Gaussian

function and the ligand chemical nature (Grant et al., 1996) for VS.

Similarity, Align-ItTM, which is an open-source algorithm, utilizes

a Gaussian description of molecular pharmacophores, although it

uses a different optimization approach to seek for the best overlay

(Taminau et al., 2008). LIGSIFT is another open-source shape-based

approach, which also uses a Gaussian function to model the molecu-

lar volumes for VS, followed by a short Metropolis Monte Carlo

simulation to refine the overlap of target molecules (Roy and

Skolnick, 2015). Despite the efficiency, there are two critical short-

ages in these 3D methods. First, since most of the methods are based

on shape comparison, they do not provide the atomic-level align-

ment information, which is often critical for the detail VS data ana-

lysis and refinement. Second, these alignments are all rigid-body

based, which does not allow flexibility and structural variation of

the aligned ligand molecules; this can considerably limit their

usefulness and efficiency in practical VS experiments, because many

ligand molecules must adopt different shape conformations when

bound with different protein receptors.

In this study, we propose a novel structural alignment algorithm,

named LS-align, for atomic-level ligand structure comparison. LS-

align contains two specific alignment modules, Rigid-LS-align and

Flexi-LS-align. While the Rigid-LS-align module focuses on optimal

rigid-body structure alignment, the Flexi-LS-align module allows

flexible structural comparison, by considering various confor-

mers deformed from the query ligand structures. To examine the

strengths and weaknesses, the LS-align algorithm has been carefully

benchmarked in a large-scale VS experiment, based on 102 targets

from the DUD-E (the Database of Useful Decoys: Enhanced) data-

base, with the result compared favorably with other state-of-the-art

3D-based virtual screening methods, including ROCS, Align-itTM

and LIGSIFT. The on-line web server of LS-align, as well as the

source code of the program, are made freely available at http://zhan

glab.ccmb.med.umich.edu/LS-align/.

2 Materials and methods

LS-align contains two modules, Rigid-LS-align and Flexi-LS-align,

for rigid-body and flexible ligand structure alignments, respectively.

It is noted that both modules neglect the hydrogen atoms and

work only with the heavy atom structures. Details algorithms are

described as follows.

2.1 Similarity scores of ligand molecules
Two scoring functions are exploited to quantify the similarity be-

tween ligand structures. The first is called LS-score, which solely con-

sider the structural information of the atoms in the two molecules:

LS� score ¼Max
1

Ntarget

XNali

i¼1

1

1þ d2
i =d

2
0

" #
(1)

where Ntarget is the number of the heavy atoms of the target mol-

ecule, Nali is the number of the aligned atom pairs, di is the distance

between ith pair of aligned atoms and d0 is a scale to normalize the

match difference. ‘Max’ denotes the maximum value after optimal

alignment. The value of LS-score lies between (0, 1), with more simi-

lar molecule pairs having a higher LS-score.

To examine the size dependence of the scale of LS-score,

Figure 1 shows the average LS-scores calculated from 8000 ligand

pairs, which are randomly selected from the PDB library and have a

pair-wise Tanimoto coefficient (calculated based on ligand finger-

print profiles)<0.3, as a function of the number (Nmin) of the heavy

atoms of the smaller ligand molecules. The raw LS-score (rLS-score)

is calculated using a constant value (1.5 Å) for d0. The data shows a

power-law dependence of the rLS-score on the molecule size, with

magnitude of the rLS-score decreased by 1.6 times as the Nmin in-

creases from 10 to 50. Such a sensitivity to the ligand size for the

random ligand pairs renders the absolute value of the rLS-score val-

ues meaningless.

To rule out the size dependence, following the idea of TM-score

(Zhang and Skolnick, 2004) we introduce a size-dependent scale

d0ðNminÞ ¼ 0:55
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmin � 93

p
þ0:15 (2)

where the parameters are obtained empirically by making the corres-

ponding power-law equation, f Nminð Þ ¼ aNb
min, to a horizontal line

in a separate training dataset. The data in Figure 1 shows that the

LS-score value with the new scale indeed flattens the molecule size
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dependence, with an approximately constant value of LS-score-

�0.46 for unrelated random molecule pairs.

The second scoring function exploited is an extension of

LS-score, named PC-score, which combines the structural similarity

with the atom mass and chemical bond similarities:

PC-score¼Max
1

Ntarget

XNali

i¼1

wd

1þd2
i =d

2
0

þ wm

1þDm2
i =Dm2

0

þwbBWJSi

� �" #

(3)

where Dmi is the difference of the relative masses of the ith pair of

aligned atoms, with Dm0 being a constant value to scale Dmi. BWJSi

is a weighted Jaccard score which measures the similarity of the

chemical bonds through which the ith pair of atoms interact with

other atoms in the two molecules (e.g. A and B):

BWJSi ¼
GðSIiÞ

G SAið Þ þG SBið Þ �GðSIiÞ
(4)

where SAi and SBi represent the sets of chemical bonds that connect

to the ith pair of atoms (Ai and Bi) from all other atoms in the mol-

ecules; SIi is the intersection set of the chemical bonds in SAi and SBi

according to their bond type. Here, six types of chemical bonds,

including Single, Double, Triple, Amide, Aromatic and Dummy

bonds, are considered. G xð Þ ¼
PNx

k¼1 wðbkÞ, with Nx being the total

number of chemical bonds of the bond set x, bk the bond type of kth

bond and wðbkÞ the specific weight of bk-th bond type. The specific

weight for each bond type is listed in Supplementary Table S1 in

Supplementary Material. In Supplementary Text S1, we present an

illustrative example to help further explain the BWJSi score.

In Eq (3), wd, wm and wb (¼0.45, 0.10 and 0.45, respectively)

are the weighting factors to balance the score terms, which are deter-

mined by maximizing the correlation between PC-score and the

root-mean-square deviation of ligand structures, i.e. RMSDLS, of

the same set of 8000 ligand pairs mentioned above. Here, RMSDLS

for Ligand A and B is defined by

RMSDLS ¼ max ðRAB;RBAÞ (5)

where RAB is defined as

RAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nA

XnA

i¼1
min

j¼1; ...; nB

d2
ij

s
(6)

Here, nA and nB are the numbers of atoms of in A and B, respect-

ively, and dij is the distance of ith atom on A and jth atom on B,

after superposing A and B by Rigid-LS-align (described in Section

2.2), with the ‘min’ running through all atoms on B. Since only the

minimum distance is considered, the RMSDLS allows redundant

atom correspondence, which is different from the standard RMSD

that considers deviation of aligned atom pairs. One advantage of

RMSDLS over the RMSD is that the latter only considers the local

structure deviation in the aligned regions and an optimization on

RMSD can drive the optimization search for shorter alignments,

while RMSDLS does not require pre-alignment of atom pairs and

can count for the global similarity of two superposed molecules.

Here we note that we used RMSDLS as a gold standard to train

the weight parameters of PC-score because we consider it an appro-

priate measurement of global structural similarity and we assume

that a reasonable alignment should result in a low RMSDLS score.

However, the RMSDLS cannot be directly used for optimizing struc-

tural alignment because the RMSDLS does not depend on alignment

on its own. For this reason, we have selected to use PC-score instead

of RMSDLS to optimize the structural alignment of ligand pairs.

Another reason for the selection of PC-score is that PC-score con-

tains additional chemical information that help assess the similarity

of the chemical properties of the ligands. Nevertheless, as described

above, the parameters used to define the PC-score are a fitting or

mimic of the RMSDLS score which is generated by the superposition

matrix that depends on the alignment.

Supplementary Figure S1 shows the average PC-scores of the

8000 random ligand pairs versus the size of the smaller ligand mol-

ecules compared (Nmin). By coincidence, the PC-score with rescaled

d0 as Eq. (2) has also an approximately constant value of �0.46,

which is independent of atom number for the random ligand pairs;

but the rPC-score score with a constant d0 has still a slight depend-

ence on the molecule size (Supplementary Fig. S1).

2.2 Rigid ligand structural alignment by Rigid-LS-align
2.2.1 Construction of initial ligand structural alignment

Given two ligand molecules (named as ‘query’ and ‘template’ for

easy description), LS-align starts with the construction of initial

structure alignments. Three kinds of quickly identified initial align-

ments are considered, which all employ an enhanced greedy search

(EGS) algorithm to search against their score matrices (Fig. 2).

The main difference in the three initial alignments lies at the score

matrices, i.e.

Smass i; jð Þ ¼ 1=ð1þ Dm2
ij=Dm2

0Þ

Svdw i; jð Þ ¼ 1=ð1þ Dvdw2
ij=Dvdw2

0Þ

Sbond i; jð Þ ¼ BWJSij

8>><
>>: (7)

where Dmij, Dvdwij and BWJSij are, respectively, the relative mass dif-

ference, van der waals radius difference and weighted Jaccard score of

the chemical bonds between ith atom in the query and jth atom in the

template molecule, which all do not require superposition.

Given a score matrix (denoted by Sinit, with row and column run-

ning along query and template respectively, Fig. 2), EGS first employs

a greedy search strategy to generate an intermediary alignment under

the constraint that each row and column can only be selected once.

In this strategy, it starts with the selection of the max value in Sinit,

Fig. 1. The average rLS-score (circles) and LS-score (triangles) of random lig-

and pairs as a function of the minimum number (Nmin) of the heavy atoms of

two small molecules compared. For the rLS-score, a constant scale,

d0¼1.5 Å, is used; for the LS-score, d0 is calculated by Eq. (2). The dashed

line is a nonlinear least square Marquardt-Levenberg fit of the rLS-score data

to a power-law equation, f Nminð Þ ¼ aNb
min , with a¼ 1.2 and b¼-0.3. The solid

line denotes the horizontal line of LS-score¼ 0.46
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e.g. at the lattice point (i, j), and aligns the ith atom in the query and

the jth atom in the template. Accordingly, all elements at ith row and

jth column are set to be invalid. Next, it selects again the max value of

the remaining valid elements in Sinit, and aligns the corresponding atom

pair in the query and template molecules, followed by the setting of all

elements of the corresponding row and column as invalid in the matrix.

Such procedure is repeated until no valid element remains in Sinit.

The intermediary alignment by the greedy search strategy is ap-

parently not an optimal solution, as the selection of local maximums

at each step can ignore the optimal combinations of other elements

that may have lower values. The second step of EGS is to improve

the intermediary alignment through iterative switch movements.

Let’s denote M ¼ f i; jð Þhg
H
h¼1 as the alignment matrix, where i; jð Þh is

the hth pair of aligned atoms, and H is the total number of the

aligned atom pairs. For a given aligned pair i; jð Þ, we consider a

switch of the alignment to another alignment pair ði; lÞ at the same

row, where another existing alignment pair at the lth column must

be switched to ðk; jÞ to keep the condition that each atom can be

aligned only once (Fig. 2). The score change due to this switch move-

ment can be calculated by

DSl ¼ Sinit i; lð Þ � Sinit i; jð Þ½ � þ
XNrow

k¼1

k k; lð Þ Sinit k; jð Þ � Sinit k; lð Þ½ � (8)

where Nrow is the number of rows in Sinit. k k; lð Þ ¼ 1 if M contains an

aligned pair (k, l); or k k; lð Þ ¼ 0 otherwise. For the aligned pair (i, j),

we calculate DSl for all columns and select the maximum value, DSlmax.

If DSlmax > 0, we will update the hth aligned pair i; jð Þ in M to be

i; lmaxð Þ, and change k; lmaxð Þ to k; jð Þ in case that kðk; lmaxÞ¼1. Here,

we do not consider the row-based switches since these are already

included in the column-based movements due to the symmetry of align-

ment. Next, starting from the updated M, we repeat the above switch

movements again to process the (hþ1)-th aligned atom pair. When all

H aligned pairs are all processed, this procedure is terminated if no

aligned pair is modified; otherwise, we will repeat the switch refinement

process for the H aligned pairs until the termination condition is

reached. The final alignment will be returned when EGS terminated.

The EGS is processed for each of the score matrices in Eq. (7),

from which three different initial alignments are constructed for the

next step of heuristic iteration and refinement.

2.2.2 Alignment refinement through heuristic iterations

To find the optimal alignment of the query (Q) and template (T)

structures that has the maximum similarity score according to

LS-score (Eq. 1) or PC-score (Eq. 3), the three initial alignments

obtained above are further refined through a heuristic iterative

optimizing process that was inspired from that used in TM-align

(Zhang and Skolnick, 2005) (Fig. 3).

Starting with an initial alignment Minit ¼ f i; jð Þhg
H
h¼1, we can

consider a fragment of m aligned atoms, e.g. Mfra ¼ f i; jð Þgkþm
h¼k , and

superpose the aligned fragment of the query to the correspond-

ing atoms of the template using the Kabsch’s rotation matrix

(Kabsch, 1976), where a new similarity score matrix can be calcu-

lated based on the Kabsch superposition, using either the LS-score:

S i; jð Þ ¼ 1=ð1þ d2
ij=d

2
0Þ, or the PC-score: S i; jð Þ ¼ wd=ð1þ d2

ij=d
2
0Þþ

wm=ð1þ Dm2
ij=Dm2

0Þ þwbBWJSij, for all atom pairs between query

and template. Starting from the new scoring matrix Sði; jÞ, we em-

ploy the EGS algorithm (Fig. 2) to identify a new alignment between

query and template, which will be used for creating a newer scoring

matrix and a newer structure alignment. Such process will be re-

peated iteratively till the alignment is unchanged.

Because the converged alignment between query and tem-

plate is sensitive to the selection of the fragment alignment,

Mfra ¼ f i; jð Þhg
kþm
h¼k , we run multiple processes, with each process

starting with m¼H, H/2, . . ., 4, respectively. When m<H, we will

run a sliding window with size m through the H aligned atom pairs

to create H-mþ1 alignment fragments that will be used for iteration

search. At each step of the heuristic iterations, an alignment score,

on either LS-score or PC-score, will be recorded, where the align-

ment corresponding to the maximum score in all the iterations, from

all three initial alignments, will be reported as the final resultant

alignment, together with their alignment scores (Fig. 3).

2.3 Flexible ligand structural alignment by

Flexi-LS-align
In practical biological processes, most ligand molecules need to change

their conformation and shape, e.g. by rotating the rotatable bonds, to

Fig. 2. Illustration of EGS algorithm. (A) and (B) are representations of the

same swap movement of alignment, but one in 2D lattice system and another

in 1D alignment

Fig. 3. Flowchart of the heuristic iteration procedure used by LS-align to

search for the optimal alignments of ligand structures
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fit the diversity of binding pockets of different receptors. As an ex-

ample, Supplementary Figure S2 shows three conformers of the same

ATP (Adenosine-5’-triphosphate) ligand, when they are bound with dif-

ferent protein-ATP complexes including the ABC transporter HlyB

(PDB ID: 1xef), RadA C-terminal ATPase (4a6x) and Cytoplasmic

Asparaginyl-tRNA Synthetase (2xti). The conformations of the ATP

are dramatically changed, with an average RMSD¼3.99 Å between

the three conformer pairs. To address the difficulty of rigid-body align-

ment on these cases, we propose a new module, Flexi-LS-align, for flex-

ible structure alignment, in which multiple conformers of the ligands

are created based on the superposed structure, by rotating the rotatable

bonds. Consequently, multiple structural alignments are generated on

the different conformers, where the alignment with the highest similar-

ity score is selected as the final alignment.

To construct alternative conformers of ligands, Flexi-LS-align take

as input the mol2 format file of the query structure, and then obtain a

list of all the rotatable single bonds (if one of these bonds is broken,

the molecule will be divide into two unrelated parts). For increasing

the speed and efficiency of alignments, Rigid-LS-align first aligns the

initial query conformer to the template and removes the well-aligned

rotatable single bonds from the rotatable bonds list. If the number of

the remaining rotatable single bonds is still larger than a pre-defined

constant NRS (NRS¼3 in this study), we select the NRS most important

bonds (i.e. rotating these bonds can maximally change the initial con-

former) to construct the alternative conformers.

The selected bonds are rotated with various rotation angles to con-

struct alternative conformers. The rotation angle of each selected bond

ranges from -180� to 180� with a step size 60�. Here, we have examined

the Flexi-LS-align with different step size from 10� to 90� on the 8000

ligand pairs; it was found that the average PC-score increases with finer

angle steps but the time cost increases exponentially, where the 60� step

size gives a reasonable PC-score/time rate. Next, we select the top 10

most reasonable conformers, which have no atom pair with a distance

less than 0.8 times of the van der Waals radius, as the candidate confor-

mers of the query molecule used for flexible structure alignments. For

each of the candidate conformer pair, an optimal alignment is obtained

through the process described in Section 2.2. Finally, the conformer

pairs resulting the highest LS-score or PC-score will be returned, to-

gether with their alignments and the alignment scores.

2.4 Statistical significance of molecular similarity
As the LS-score and PC-score cannot tell on their own how signifi-

cant the alignments are, we introduce an additional quality, P-value,

which equals to the probability of having the specific scores above a

certain value, to assess the statistical significances of the alignments

relative to the random ligand structure comparisons.

In Supplementary Figures S3 and S4, we show that the probabil-

ity densities of LS-score and PC-score, which are calculated for the 1

000 000 pairs of randomly selected ligand structures from the PDB,

follow well the type-I extreme value distribution (EVD) (Embrechts

et al., 1997):

f ðzÞ ¼ e�z�e�z

(9)

where z ¼ ðs� lÞ=r and s denotes the LS-score or PC-score. The lo-

cation and scale parameters of the EVD can be calculated by

l ¼ aþ b ln NQ þ c ln NT

r ¼ d þ e ln NQ þ f ln NT

(
(10)

with NQ and NT being the numbers of the heavy atoms in the query

and template molecules, respectively. The values of the parameters,

a–f, are obtained by fitting Eq. (10) with the data in Supplementary

Figures S3 and S4 through linear regression and listed in

Supplementary Table S2. Given the extreme value distribution

of LS- and PC-scores, the P-value can be obtained by integrating

Eq. (9):

P� value ¼
ð1

z

f zð Þdz ¼ 1� e�e�z

(11)

2.5 Benchmark dataset and evaluation indexes
The DUD-E (Mysinger et al., 2012) database is used as a standard

dataset to test the LS-align for VS prediction. DUD-E contains a list

of 102 proteins, each with on average 224 active ligands. For each

active ligand, there are around 50 similar but non-active ligands,

called decoys, to challenge the VS procedure. The 102 proteins span

diverse categories, including 26 kinases, 15 proteases, 11 nuclear re-

ceptors, 5 GPCRs, 2 ion channels, 2 cytochrome P450s, 36 other en-

zymes and 5 miscellaneous proteins. To avoid bias of test, we

remove the duplicate entries to make sure that each ligand has only

one conformer in the database. The final list of all the 102 proteins

along with the number of active and decoy ligands can be found in

Supplementary Table S3, with the whole dataset downloadable at

https://zhanglab.ccmb.med.umich.edu/LS-align/Database.html.

To examine the performance of the structural alignment meth-

ods in VS, we first use the methods to match the seed ligand from

the co-crystallized ligand-protein complex in DUD-E with all other

active and decoy compounds associated with the same protein recep-

tor. The alignment scores calculated by the methods are then used to

rank the compounds. Two indexes, enrichment factor (EF) and hit

rate (HR), are calculated by

EFx% ¼
TPx%=Nx%

selected

Nactives=Ntotal

HRx% ¼
EFx%

actual

EFx%
ideal

� 100

8>>>>><
>>>>>:

(12)

where x% represents the fraction of screened library selected for

evaluating the methods, which is usually set to 1, 5 and 10%. TPx%

and Nx%
selected are the number of true positives and the number of all

candidate compounds in the top x% of the screening library selected

by the testing methods. Nactives and Ntotal denote the total numbers

of the active molecules and all compound candidates screened, re-

spectively. Thus, EFx% represents the enrichment factor of the test-

ing methods in prioritizing active compounds compared to the

random selections at the cutoff x%. EFx%
actual and EFx%

ideal are the en-

richment factor values of the actual and the ideal scores, respect-

ively, where HRx% represents the ratio of the actual over the best

possible score function for prioritizing the active compounds from

the compound library.

In addition to these two evaluation indexes, we also use AUC,

which is the area under the receiver operating characteristic (ROC)

curve, to assess the tested methods. The AUC value varies from 0 to

1, with 0.5 indicating the performance of random selections.

3 Results and discussions

3.1 PC-score achieves better VS results than LS-score
Since the quality of the scoring function has impact on the ligand

alignment and VS, we first compare the two proposed scoring func-

tions, LS-score and PC-score, in Table 1, which lists the enrichment
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factor and AUC values on different scoring functions but using the

same search engine from the Rigid-LS-align program.

It is shown that the PC-score outperforms the LS-score in all four

evaluation indexes. The average EF1%; EF5%; EF10% and AUC

of PC-score are 20.1, 6.9, 4.3 and 0.74, which are 67.5, 46.8, 30.3

and 7.2% higher than that of LS-score, respectively. The P-values in

student t-test are all below 10�6, indicating that the differences are

statistically significant. Supplementary Figure S5 presents a head-to-

head comparison of the AUC scores by PC- and LS-scores, where

PC-score outperforms LS-score in 74 cases (or 72.5%), while

LS-score does so in 28 cases out of the 102 DUD-E protein targets.

One of the major reasons for PC-score to outperform the

LS-score is that LS-score is purely structure-based while PC-score in-

cludes mass and chemical bonding information of the aligned atoms

in addition to the structure similarity. The mass and chemical bind-

ing information helps LS-align to find better matches between the

molecules. Figure 4 shows a representative example to align an ACE

active molecule ZINC03812885 and the seed ligand taken from

ACE receptor structure (PDBID: 3bkl). The LS-score based algo-

rithm identified a suboptimal alignment with only 7 out of 11 atom

pairs that have the distance below 1 Å, resulting a RMSD¼1.17 Å

and LS-score¼0.25, while the PC-score based program identified

an alignment with all 13 atom pairs in a distance below 1 Å, which

has a RMSD¼0.44 Å and LS-score¼0.62. Because LS-score does

not contain chemical information, only 5 pairs of aligned atoms

(C1, C2, C5, C9, C10) have identical atom type (or an atom iden-

tity¼5/11¼45%). Due to the guidance of mass and chemical

bonds, the alignment by PC-score has 12 out of 13 aligned pairs

with identical atom type (or an atom identity¼92%). Such chemical

restraints help to guide the Rigid-LS-align program to quickly iden-

tify optimal alignments that contain more chemically similar atom

pairs, which often have a closer geometrical similarity. This more

precise alignment of ligand molecules also helps increase the accur-

acy of the ligand selection in the VS experiments.

As PC-score contains three component terms, in Supplementary

Table S4 we examined the VS performance of the three terms from

LS-, Mass- and BWJS-scores, in terms of the enrichment factors and

AUC. It was shown that the performances of LS- and BWJS-scores

are comparable and both consistently outperform that of Mass-

score. However, a combination of all three terms, i.e. the PC-score,

significantly outperforms all the individual scoring functions, dem-

onstrating again the usefulness of the integration of multiple com-

plementary information in the structural alignment search.

3.2 EGS identifies faster and more accurate alignments

than the Hungarian algorithm
The Hungarian algorithm (Kuhn, 1955; Munkres, 1957) is a trad-

itional combinatorial optimization approach, which has been widely

used for solving the assignment problems including the sequence-

order independent structure alignments. To compare EGS with the

Hungarian algorithm, we constructed a new program (H-LS-align)

by replacing EGS with the Hungarian algorithm in the LS-align.

Supplementary Figure S6 presents a head-to-head comparison of the

two programs on the same set of 8000 ligand pairs, in regard to the

PC-score and the CPU time running on a 2.8 GHz IBM NeXtScale

machine.

It is shown from Supplementary Figure S6A that LS-align gener-

ates alignments with a higher PC-score than H-LS-align in 5167 out

of the 8000 cases, while H-LS-align outperforms LS-align in 1956

cases. The average PC-scores identified by LS-align and H-LS-align

are 0.408 and 0.387, with a P-value in the Wilcoxon signed rank

t-test being 6.0�10�13, suggesting that the PC-score difference of

the two programs is statistically significant. Particularly, the LS-

align is much faster than H-LS-align. As shown in Supplementary

Figure S6B, the average CPU time by the LS-align and H-LS-align is

0.015 and 0.247 s, where the longest running time for them is 0.73 s

and 10.94 s, respectively. Overall, these data suggest that EGS can

identify more accurate alignments within a much shorter time than

the Hungarian algorithm, on the same framework of the LS-align

program.

3.3 Comparison of Flexi-LS-align and Rigid-LS-align

in VS
To examine the impact of conformational flexibility to the structural

alignment programs, we collected 30 000 ATP molecule pairs ran-

domly from the PDB library. Figure 5 lists the histogram of the

RMSDLS by Rigid-LS-align and Flexi-LS-align. It is shown that

Table 1. VS results by LS- and PC-scores on DUD-E database

Score

function

EF1%

(P-value)

EF5%

(P-value)

EF10%

(P-value)

AUC

(P-value)

LS-score 12.0 (<10�14) 4.7 (<10�15) 3.3 (<10�11) 0.69 (<10�6)

PC-score 20.1 6.9 4.3 0.74

Note: Values in parentheses are P-values in student t-test relative to PC-score.

Fig. 4. Illustrative example of ligand structure alignments between

ZINC03812885 (gray sticks) and seed ligand (dark sticks) generated by Rigid-

LS-aligns based on different scoring functions. (A) The original structures of

the two molecules. (B) The alignment of the two ligands using LS-score-

based Rigid-LS-align program. (C) The alignment of the two ligands using PC-

score-based Rigid-LS-align program. The numbers mean the indexes of the

heavy atoms in the original input file. ‘:’ denotes strongly aligned atom pairs

of the aligned distance<1 Å. ‘.’ means weakly aligned atom pairs of the

aligned distance in 1–2 Å
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Flexi-LS-align generated alignments with a RMSDLS<1 Å for 5262

(about 17.5%) ATP pairs and below 2 Å for 24 476 (about 81.6%)

ATP pairs, whereas Rigid-LS-align did so for 1751 (about 5.8%)

and 17 106 (about 57.0%) ATP pairs, respectively. The average

RMSDLS of the alignments by Flexi-LS-align and Rigid-LS-align

programs is 1.52 and 2.08 Å, respectively. Such reduction of

RMSDLS by Flexi-LS-align is expected because a considerably large

set of conformers have been used for the structural alignment com-

parisons; the data also confirms that the introduction of structural

flexibility can indeed help find closer matches of the same ligand

molecules from different binder systems.

In Table 2, we further compare the VS results of Flexi-LS-align

and Rigid-LS-align programs on the DUD-E dataset using the EF

and HR evaluation indexes. It can be seen that Flexi-LS-align con-

sistently outperforms Rigid-LS-align by generating higher enrich-

ment factor values, no matter if LS-score or PC-score is used. When

using LS-score, Flexi-LS-align can achieve an average EF1% and

HR1% of 14.7 and 24.0, which are about 22.5 and 21.2% higher

than that of Rigid-LS-align; if using PC-score, the EF1% and HR1%

values by Flexi-LS-align are increased to 22.0 and 35.9, which are

9.5 and 8.8% higher than that by Rigid-LS-align, respectively.

Figure 6 presents an illustrative example of alignment of the

ADP to ATP molecules by Rigid-LS-align and Flexi-LS-align, re-

spectively. Due to the adoption of the flexibility of the conformers,

Flexi-LS-align identified a much higher number of the atom pairs

(21 versus 16 to Rigid-LS-align) that are closely matched between

the two molecules with a distance<1 Å. The ability in identifying

more precise match of the ligand molecules partially explains why

the Flexi-LS-align could have a better ability in generating higher en-

richment factors in the VS experiment as demonstrated by the data

in Table 2.

3.4 Comparison of LS-align with other methods in VS

experiment based on rigid-body alignment
Most ligand structural alignment methods in literature do not con-

sider the flexibility of ligand conformers. To have a fair comparison

of LS-align with these programs, we first employ the Rigid-LS-align

module to obtain the rigid-body alignments between the query and

the template compounds in the library. Table 3 summarizes the VS

results of Rigid-LS-align, compared to LIGSIFT (Roy and Skolnick,

2015), Align-ItTM (Taminau et al., 2008) and ROCS (OpenEye Inc)

(Grant et al., 1996), on the 102 DUD-E protein targets. Here, given

the advantage of PC-score over LS-score in VS, we only discuss the

version of LS-align using PC-score in the comparisons.

Comparing to LIGSIFT, Align-ItTM and ROCS, Rigid-LS-align

achieves a considerably higher EF score, indicating Rigid-LS-align

can recognize more active molecules in the rigid-body based VS ex-

periments. The average EF1%, EF5% and EF10% values of Rigid-LS-

align are 20.1, 6.9 and 4.3, which are about 41.5, 23.2 and 16.2%

higher than that of the second-best method Align-ItTM, respectively.

Rigid-LS-align also outperforms LIGSIFT, Align-ItTM and ROCS

concerning HR1%, HR5% and HR10%. The average HR1%, HR5%

and HR10% of Rigid-LS-align are 33.0, 34.8 and 43.5, whereas the

average HR1%, HR5% and HR10% of the second-best method

(Align-ItTM), are 23.4, 28.8 and 37.4, respectively.

In addition to enrichment factor, Supplementary Figure S7 pre-

sents a head-to-head comparison of Rigid-LS-align versus the three

control methods on the AUC values. Out of the 102 DUD-E targets,

there are 70, 65 and 86 cases where Rigid-LS-align has a higher AUC

than LIGSIFT, Align-ItTM and ROCS, respectively. To examine the

Fig. 5. Histogram of RMSDLS of the aligned ATP structure pairs by Rigid-

LS-align and Flexi-LS-align, respectively, on 30 000 random ATP pairs

from the PDB

Table 2. Virtual screening performance comparisons of Rigid-

LS-align and Flexi-LS-align under different scoring functions on

DUD-E database

Method EF1% EF5% EF10% HR1% HR5% HR10%

Rigid-LS-align (LS) 12.0 4.7 3.3 19.8 23.7 33.2

Flexi-LS-align (LS) 14.7 5.6 3.7 24.0 28.2 36.6

Rigid-LS-align (PC) 20.1 6.9 4.3 33.0 34.8 43.5

Flexi-LS-align (PC) 22.0 7.2 4.5 35.9 36.4 45.1

Note: ‘LS’ and ‘PC’ refer to ‘LS-score’ and ‘PC-score’ respectively.

Fig. 6. Example of ligand structure alignments by Rigid-LS-align and Flexi-LS-

align for ADP (gray sticks) and ATP (dark sticks). (A) Original structures of

ADP and ATP ligands. (B) Alignment of two ligands by Rigid-LS-align. (C)

Alignment of two ligands by Flexi-LS-align. The numbers are the atom

indexes in original structures. ‘:’ denotes strongly aligned atom pairs of

distance<1 Å. ‘.’ means weakly aligned pairs of distance<2 Å
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significance of the differences between the methods, we list in

Supplementary Table S5 the P-values in the student t-test using vari-

ous assessment indexes (EF, HR and AUC), where the P-values be-

tween Rigid-LS-align and the three control methods are all below

10�3, indicating that the difference is statistically significant.

In Table 4, we split the DUD-E datasets into four categories, i.e.

kinases (26 targets), proteases (15 targets), nuclear receptors (11 tar-

gets) and GPCRs (5 targets). It is found that Rigid-LS-align has a

slightly lower performance in proteases and GPCRs than kinases

and nuclear receptors; but its enrichment score is higher than the

control methods through all categories of proteins. Taking kinases

as an example, the EF1%, EF5% and EF10% of Rigid-LS-align are

19.0, 6.5 and 4.2, which are about 21.0, 12.1 and 13.5% higher

than Align-ItTM, 57.0, 47.7 and 35.5% higher than LIGSIFT, and

46.2, 62.5 and 61.5% higher than ROCS, respectively.

To further examine the robustness of the programs on different

ligands, in addition to the use of co-crystallized ligands, we per-

formed a new experiment that uses each of the active ligands (�224

per protein target) as the seed ligand to rank other decoy compounds

in the DUD-E datasets. Supplementary Figure S8 shows a head-to-

head comparison of the average EF1% value for each target by

Rigid-LS-align versus that by the three control methods. Out of

the 102 protein targets, there are 96, 80 and 84 cases where Rigid-

LS-align has a higher average EF1% than LIGSIFT, Align-ItTM and

ROCS, respectively. The P-values of the difference between

Rigid-LS-align and the three control methods in student t-test are all

below 10�6, indicating the difference is statistically significant.

Supplementary Figure S9 lists the average EF1%, EF5% and EF10%

values over all the 102 targets achieved by Rigid-LS-align (22.4, 7.1

and 4.3), which are again higher than that by the control methods,

i.e. 50.3, 47.9 and 34.4% higher than that of LIGSIFT, 22.4, 22.4

and 19.4% higher than that of Align-ItTM, and 25.8, 34.0 and

34.4% higher than that of ROCS, respectively.

3.5 Comparison of LS-align with other methods in VS

experiment based on flexible alignment
Since the consideration of structural flexibility has shown positive

impact on the VS performance, here we compare the Flexi-LS-align

module with the LIGSIFT, Align-ItTM and ROCS programs. Because

these control methods do not have option for flexible alignment, we

first generate a set of alterative conformers by the Flexi-LS-align and

then apply the control programs on the conformers. Table 5 shows

the VS results of the four programs on the same set of conformers

from Flexi-LS-align.

The average EF1% by Flexi-LS-align is 22.0 on the 102 DUD-E

proteins, which is higher than that of LIGSIFT (13.0), Align-ItTM

(13.2) and ROCS (13.7), all with a significant P-value (<10�10).

Among the 102 targets, a high enrichment score with EF1%>30

was observed for Flexi-LS-align on 26 DUD-E targets, including

ESR1, FAK1, GCR, MK01, SAHH, WEE1, KIF11, PGH2, PYRD,

XIAP, HIVPR, TYSY, ACES, KITH, MMP13, PNPH, THB, ADA,

COMT, DEF, FABP4, FPPS, HMDH, KPCB, MET and PUR2; on

the contrast, there are 9, 11, or 10 targets that are achieved by

LIGSIFT, Align-ItTM, or ROCS at this level of performance (see

Supplementary Table S6 for detailed EF values by the programs).

It is of interest to note that the use of flexible conformers gener-

ated by Flexi-LS-align does not improve much the performance of

control methods compared to using the rigid-body alignment. In

fact, the average EF1% values of LIGSIFT (13.0) and Align-ItTM

(13.2) using multiple Flexi-LS-align conformers are slightly lower

than that using rigid-body conformers (13.3 and 14.2), although

ROCS is slightly improved (13.2 versus 13.7). One reason for this

difference might be that the multiple conformers generated by Flexi-

LS-align, which involve the conformer selections specified by the

Rigid-LS-align alignment that is specifically beneficial to LS-align

search, might not satisfy the requirement of the conformation diver-

sity of the control methods.

To examine this possibility, we further compare Rigid-LS-align

with the control methods on a new set of diverse conformers created

by the software OMEGA (OpenEye Inc) (Hawkins et al., 2010)

using the default settings from the co-crystallized seed ligands.

Table 6 show the VS performances by the four programs based on

50 and 10 OMEGA-generated conformers, respectively. Indeed, the

conformers from OMEGA improve the performance of LIGSIFT

and Align-ItTM. They also increase the performance of Rigid-LS-

align and ROCS, compared to that using a single conformer. But the

increase on LS-align is not as high as that using the 10 flexible con-

formers created by Flexi-LS-align; this is consistent with the fact

that the conformer generation procedure, which decides the rotation

bonds and angles based on the first round of LS-align rigid-body

superposition, has been specifically optimized for maximizing the

Flexi-LS-align performance.

Nevertheless, the performance of Rigid-LS-align on the OMEGA

conformers is still relatively higher than that of the control methods

on the same conformer set. Using 50 OMEGA-generated confor-

mers, for example, the EF1% and HR1% of Rigid-LS-align are 21.9

and 36.5, which are about 7.9 and 11.6% higher than that of

LIGSIFT, 36.9 and 42.0% higher than that of Align-ItTM, and 57.6

Table 3. VS results by Rigid-LS-align, LIGSIFT, Align-ItTM and ROCS

using single rigid-body conformers of molecules in the DUD-E

Method EF1% EF5% EF10% HR1% HR5% HR10%

LIGSIFT (shape sTC) 8.6 3.6 2.6 13.8 17.9 26.3

LIGSIFT (chem sTC) 13.3 4.9 3.4 21.3 24.7 33.8

LIGSIFT (combo sTC) 11.9 4.5 3.1 19.6 22.8 31.5

Align-ItTM 14.2 5.6 3.7 23.4 28.8 37.4

ROCS 13.2 4.5 2.9 21.3 22.4 29.0

Rigid-LS-align 20.1 6.9 4.3 33.0 34.8 43.5

Note: Shape sTC, chem sTC and combo sTC are different modules used in

LIGSIFT. Bold fonts highlight the highest value in each category.

Table 4. EF values by Rigid-LS-align, LIGSIFT, Align-ItTM and ROCS

using single rigid-body conformers on four protein categories

Subset (#proteins) Method EF1% EF5% EF10%

Kinases (26) LIGSIFT (chem sTC) 12.1 4.4 3.1

Align-ItTM 15.7 5.8 3.7

ROCS 13.0 4.0 2.6

Rigid-LS-align 19.0 6.5 4.2

Proteases (15) LIGSIFT (chem sTC) 8.2 4.1 3.0

Align-ItTM 5.5 3.4 2.5

ROCS 6.3 2.6 2.0

Rigid-LS-align 15.4 6.3 4.3

Nuclear receptors (11) LIGSIFT (chem sTC) 16.9 6.1 4.1

Align-ItTM 11.8 5.0 3.3

ROCS 16.3 6.0 3.8

Rigid-LS-align 22.2 7.2 4.6

GPCRs (5) LIGSIFT (chem sTC) 7.3 3.7 2.6

Align-ItTM 3.2 2.6 2.0

ROCS 7.0 3.1 2.2

Rigid-LS-align 16.6 5.5 3.6

Note: Bold fonts highlight the highest value in each category.
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and 62.9% higher than that of ROCS, respectively (see detail in

Supplementary Table S7). Using 10 OMEGA-generated conformers,

the EF1% and HR1% of Rigid-LS-align are 21.8 and 36.1, which are

19.1 and 22.8% higher than that of LIGSIFT, 41.6 and 46.7%

higher than that of Align-ItTM, and 52.4 and 57.0% higher than

that of ROCS, respectively.

In Supplementary Figure S10, we further examine the AUC

histogram of the four programs using the 50 OMEGA conformers,

which shows that the distribution of AUC score by Rigid-LS-align is

generally shifted to the region of larger AUC values. The average

AUC for Rigid-LS-align, LIGSIFT, Align-ItTM and ROCS are 0.740,

0.714, 0.664 and 0.601, respectively, which demonstrate again the

advantage of the LS-align program in terms of both conformational

search engine and scoring function.

3.6 Comparison of 3D- and 2D-based methods on VS
Since 3D based structure alignments are generally more time-

consuming than 2D based approaches, to examine the justification

of the time investment we present in Supplementary Table S8 a brief

comparison of the VS results by the four 3D based methods, with

the most widely used 2D fingerprint method, named ‘TC-FP’, in

which the similarity score of two ligand molecules is measured by

the Tanimoto coefficient of their fingerprints (Willett, 2006). Here,

the fingerprint vector of each molecule is generated by OpenBabel

(O’Boyle et al., 2011); and 50 conformers by OMEGA are used for

the 3D methods.

Interestingly, despite the fast speed and simplicity of implemen-

tation, the performance of TC-FP is only slightly worse than (or

largely comparable to) the best 3D structure alignment result from

Rigid-LS-align, and outperforms all of other 3D-ligand comparison

methods. Nevertheless, we believe that there are several reasons for

which the 3D methods are still valuable. First, since they are based

on different principles, the VS results by the 2D and 3D approaches

are highly complementary. As shown in Figure 7, a simple linear

combination with TC-FP can have the majority of the 3D methods

significantly outperform the 2D method in VS. For example, with a

50/50 combination, TC-FPþRigid-LS-align can generate an average

EF1% value of 26.0, which is significantly higher than either of

TC-FP (20.5) or Rigid-LS-align (21.9), with a P-value¼4.2�10�8

and 2.0�10�8, respectively.

Second, the LS-align has been designed mainly for comparing the

structures of ligand molecules, where VS is only one of its applica-

tions. For example, the 3D structural alignments could help visualize

and analyze the physical and function features required for the bio-

logical interactions, which is essential for scaffold hopping (Hu

et al., 2017; Quintus et al., 2009). In Supplementary Figure S11, we

present six examples of scaffold hopping, in which the analogous

compounds can be easily identified by Rigid-LS-align but cannot be

found using 2D-based approaches.

4 Discussions

We have developed a novel algorithm, LS-align, for atomic-level, se-

quence-order independent comparison of ligand molecule structures.

The large-scale experimental tests on the DUD-E database show

that LS-align outperforms many of the state of the art 3D-based lig-

and alignment methods in virtual screening by prioritizing ligand

compounds with a higher enrichment score and hitting rate.

Detail data analyses show that the superior performance of LS-

align in VS mainly stems from the use of the sensitive PC-score

which combines multiple information of structural and physico-

chemical features with optimized weighting schemes. With the same

right-body alignment scheme, the combination of multiple features

can increase the enrichment score by 67.5% compared to the purely

Table 5. VS results by Flexi-LS-align, LIGSIFT, Align-ItTM and ROCS using the same set of alternative conformers from Flexi-LS-align

Method EF1% (P-value) EF5% (P-value) EF10% (P-value) AUC (P-value)

LIGSIFT (chem sTC) 13.0 (<10�12) 4.8 (<10�12) 3.1 (<10�12) 0.70 (<10�12)

Align-ItTM 13.2 (<10�12) 4.9 (<10�12) 3.2 (<10�12) 0.66 (<10�10)

ROCS 13.7 (<10�10) 4.6 (<10�13) 2.9 (<10�16) 0.61 (<10�19)

Flexi-LS-align 22.0 7.2 4.5 0.75

Note: Values in parentheses are P-values in student t-test relative to Flexi-LS-align.

Table 6. VS performance comparisons of Rigid-LS-align, LIGSIFT,

Align-ItTM and ROCS using 50 and 10 OMEGA-generated confor-

mers of database molecules on 102 DUD-E targets

Method EF1% EF5% EF10% HR1% HR5% HR10%

Using 50 OMEGA conformers

LIGSIFT (chem sTC) 20.3 6.7 4.1 32.7 33.6 41.3

Align-ItTM 16.0 5.4 3.4 25.7 27.0 34.4

ROCS 13.9 4.7 2.9 22.4 23.4 29.5

Rigid-LS-align 21.9 7.3 4.5 36.5 36.5 44.7

Using 10 OMEGA conformers

LIGSIFT (chem sTC) 18.3 6.1 3.9 29.4 30.6 38.8

Align-ItTM 15.4 5.4 3.5 24.6 27.2 34.6

ROCS 14.3 4.8 3.0 23.0 23.9 29.9

Rigid-LS-align 21.8 7.2 4.5 36.1 36.2 44.4

Note: Bold fonts highlight the highest value in each category.

Fig. 7. The variation curves of the average EF1% value versus weight to lin-

early combine the 2D and 3D scores. The data are generated by using 50

OMEGA-generated conformers on the DUD-E dataset. The best combinations

that result in the highest EF1% value (26.0, 25.0, 23.1, 21.9) have the weight of

0.5, 0.3, 0.6 and 0.8 for Rigid-LS-align, LIGSIFT, Align-ItTM and ROCS, respect-

ively (see Supplementary Table S8)
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structure-based scoring function. The second advantage of the

LS-align is the introduction of structure variations in the alignment

search, which further improves the screening performance by nearly

10% in the benchmark test. Although this improvement is not as sig-

nificant as the score function changes, it provides the potential to

count for the binding-induced conformational changes in the ligand

molecules and therefore break through the barrier of the rigid-body

alignments in prioritizing such difficult cases in VS. Finally, the

EGS-based heuristic iterative search algorithm is helpful for fast and

accurately identifying the reasonable alignments from a huge num-

ber of possible alternatives. Currently, for a pair of ligand molecules

each with 30 heavy atoms, it takes about 30 ms and 0.5 s for obtain-

ing rigid-body and flexible alignments, respectively, on a 3.5 GHz

Intel-Xeon processor.

Compared to the current 3D ligand comparison methods in lit-

erature, which are mainly based on shape overlap of molecule struc-

tures, another advantage of the proposed LS-align is its ability in

generating atom-specific alignments, which provides the conveni-

ence for visualization and analyses of the ligand structural compari-

sons. This is also critical for the application to ligand-protein

docking and scaffold hopping as illustrated in Supplementary

Figure S11.

Nevertheless, it is noted that the LS-align method has still room

for further improvement. For example, the current LS-align program

only considers single-bond rotations with discrete rotation angles

for flexible conformer generations. In our virtual screening experi-

ment, we have observed several cases, in which the best candidates

with a similar chemical formula was missed by LS-align due to the

conformational changes that are not recovered by the Flexi-LS-

align. Detailed analyses showed that these missed cases are mainly

due to the limit of single-bond rotation and the big size of discrete

rotations. Supplementary Figure S12 shows two examples in which

better alignments could be achieved when considering additional de-

gree of ring flexibility and/or with a finer rotation bond-angle.

Including multiple chemical bond rotations with finer variation

steps in the flexible alignment process should apparently help LS-

align to achieve more accurate structure alignment and enhance the

usefulness in the VS experiment; but merely reducing the step size of

rotations or adding extra degrees of freedom in ligand flexibility will

exponentially increase the time cost of the alignment search process.

Nevertheless, given the importance of the virtual screen experiments

and the role that the ligand flexibility plays in VS, such effort is wor-

thy of exploring in future studies.
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