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INTRODUCTION 
 

The continuing pandemic of coronavirus disease 2019 

(COVID-19) caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2, previously 

known as 2019-nCoV) has now become an international 

public health threat, causing inconceivable loss of lives 

and economic instability [1]. As of May 17, 2020, there 

have been more than 4500000 confirmed cases and over 

300000 deaths caused by COVID-19 worldwide [2]. 

Exacerbating the problem, there is no specific antiviral 

medication toward COVID-19, though development 

efforts are underway [3–6]. Although vaccines are 

thought to be the most powerful weapon to fight against 

virus invasion, it may take quite a long time to develop 

and clinically test the safety of a vaccine. Moreover, 

vaccines are usually limited  as preventative  measures  

 

given to uninfected individuals. Thus, as an emergency 

measure, it is desirable to develop effective antiviral 

therapeutics that can take effect rapidly not only to treat 

COVID-19, but also to prevent its further transmission. 

 

It has been confirmed that SARS-CoV-2 initiates its entry 

into host cells by binding to the angiotensin-converting 

enzyme 2 (ACE2) via the receptor binding domain (RBD) 

of its spike protein [7, 8]. Therefore, it is possible to 

develop new therapeutics to block SARS-CoV-2 from 

binding to ACE2. Although small molecule compounds 

are commonly preferred as therapeutics, they are not 

effective at blocking protein-protein interactions (PPIs) 

where a deep binding pocket may be missing at the 

interface [9]. On the contrary, peptide binders are more 

suitable for disrupting PPIs by specifically binding to the 

interface binding region [10]. Also of importance, small 
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binding affinity to the interface of the SARS-CoV-2 RBD. The binding experiment analyses showed that the 
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receptor (with -53.35 vs. -46.46 EvoEF2 energy unit scores for the top designed and wild-type peptides, 
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treat the COVID-19 disease by blocking the critical spike-RBD and hACE2 interactions. 
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peptides have reduced immunogenicity [11]. These 

positive features make peptides great candidates to serve 

as therapeutics [12, 13]. Recently, Zhang et al. [14] 

reported that the natural 23-mer peptide (a.a. 21-43) cut 

from the human ACE2 (hACE2) α1 helix can strongly 

bind to SARS-CoV-2 RBD with a disassociation constant 

(Kd) of 47 nM, which was comparable to that of the full-

length hACE2 binding to SARS-CoV-2 RBD [15]; they 

also showed that a shorter 12-mer peptide (a.a. 27-38) 

from the same helix was not able to bind the virus RBD. 

In an earlier report, Han et al. [16] performed a study to 

identify the critical determinants on hACE2 for SARS-

CoV entry, and they found that two natural peptides from 

hACE2 (a.a. 22-44 and 22-57) exhibited a modest 

antiviral activity and inhibited the binding of SARS-CoV 

RBD to hACE2 with IC50 values of about 50 μM and 6 

μM, respectively, implying that the peptide composed of 

residues 22-57 had a stronger binding affinity for SARS-

CoV RBD. They also generated a peptide by linking two 

discontinuous fragments from hACE2 (a.a. 22-44 and 

351-357) with a glycine, and this 31-mer exhibited a 

potent antiviral activity with an IC50 of about 0.1 μM, 

indicating that this artificial peptide had a much stronger 

binding affinity for SARS-CoV RBD than the peptides 

composed of residues 22-44 or 22-57. Due to the high 

similarity of the binding interfaces between SARS-CoV 

RBD/hACE2 and SARS-CoV-2 RBD/hACE2, we 

hypothesize that this artificial peptide may also bind to 

SARS-CoV-2 more strongly than the peptide 21-43 tested 

by Zhang et al. [14], which is similar to the peptide 22-44 

from Han et al. [16]. Although the natural peptides are 

promising, it has been argued that the sequence of hACE2 

is suboptimal for binding the S protein of SARS-CoV-2 

[17]. Therefore, further redesign of the natural peptides 

may significantly enhance its binding affinity to the virus 

RBD and the improved peptide binders may have the 

potential to inhibit SARS-CoV-2 from entering human 

cells and hinder its rapid transmission. 

 

In this work, we computationally designed thousands of 

peptide binders that exhibited a stronger binding affinity 

for SARS-CoV-2 than the natural peptides through 

computational experiments. Based on the crystal 

structure of the SARS-CoV-2 RBD/hACE2 complex, 

we constructed a hybrid peptide by linking two peptidic 

fragments from hACE2 (a.a. 22-44 and 351-357) with a 

glycine. Starting from the peptide-protein complex, we 

used our protein design approaches, EvoEF2 [18] and 

EvoDesign [19], to completely redesign the amino acid 

sequences that match the peptide scaffold while 

enhancing its binding affinity for SARS-CoV-2. 

Detailed analyses support the strong binding potency of 

the designed binders, which not only recapitulated the 

critical native binding interactions but also introduced 

new favorable interactions to enhance binding. Due to 

the urgency caused by COVID-19, we share these 

computational peptides to the community, which may 

be helpful for further developing antiviral peptide 

therapeutics to combat this pandemic. 

 

RESULTS 
 

Initial peptide scaffold construction 
 

Several experimental SARS-CoV-2 RBD/hACE2 

complex structures have been reported [20–22] and 

deposited in the Protein Data Bank (PDB) [23]. 

Specifically, PDB ID 6m17 is a 2.9 Å structure of the 

SARS-CoV-2 RBD/ACE2-B0AT1 complex determined 

using cryogenic electron microscopy (Cryo-EM) [22]. 

Furthermore, PDB ID 6m0j is a 2.45 Å X-ray crystal 

structure of SARS-CoV-2 RBD/hACE2 [20], while 

6vw1 is a 2.68 Å X-ray structure of SARS-CoV-2 

chimeric RBD/hACE2 [21], where the chimeric RBD is 

comprised of the receptor binding motif (RBM) from 

SARS-CoV-2 S and the core from SARS-CoV, with the 

mutation N439R. The three experimental complex 

structures are quite similar to each other in terms of 

global folds (Figure 1A). Since 6vw1 does not contain 

the wild-type SARS-CoV-2 RBD, we did not use it as a 

template. Based on a preliminary examination, we 

found that the structure quality of 6m0j was better than 

6m17 (see below), and therefore we only considered 

6m0j as the template complex. 
 

Two peptide fragments (a.a. 22-44 and 351-357) from 

hACE2 (6m0j, chain A) were extracted because they 

formed extensive contacts with the SARS-CoV-2 RBD 

(6m0j, chain E). The positions 44 and 351 were chosen 

because the distance between their Cα atoms was only 5.5 

Å (see Supplementary Figure 1), and therefore only one 

residue was required to link them. To reduce the 

interference to the surrounding amino acids, the linker 

residue was initially chosen as glycine. The small loop, 

44S-glycine-351L, was then reconstructed using 

MODELLER [24], while the other parts of the whole 

peptide were kept constant. Five similar loop con-

formations were produced and the one with the best DOPE 

[25] score was selected, where DOPE is a built-in scoring 

function in the MODELLER package for model 

assessment and loop modeling. For the sake of simplifying 

the discussion, the initial hybrid peptide constructed in this 

manner was denoted as the wild-type (note that it was not a 

truly native peptide), and the complex structure of SARS-

CoV-2 RBD/hACE2 hybrid peptide was used as the 

template for computational peptide design (Figure 1B). 

 

Evaluation of EvoEF2 score on experimental 

complexes 
 

At the very beginning of the outbreak of SARS-CoV-2, 

to determine its relative infectivity, many computational 
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studies were performed to compare the binding affinity 

of SARS-CoV-2 RBD for hACE2 with that of SARS-

CoV RBD for hACE2 based on homology modeling 

structures; all these studies came up with the conclusion 

that SARS-CoV-2 showed much weaker binding 

affinity to hACE2 than SARS-CoV and SARS-CoV-2 

might not be as infectious as SARS-CoV [26–28]. 

However, recent biochemical studies demonstrated that 

SARS-CoV-2 exhibits much stronger binding affinity to 

hACE2 than SARS-CoV [3, 15, 21], implying that the 

homology models may not have been sufficiently 

accurate for binding affinity assessment based on 

atomic-level scoring functions, although the global 

folds of these models were correct. 

 

Here, we used the EvoEF2 energy function to evaluate 

the binding affinity of SARS-CoV and/or SARS-CoV-2 

(chimeric) RBD for hACE2 based on the experimental 

structures described above. As shown in Table 1, 

SARS-CoV-2 RBD showed stronger binding potency 

(lower EvoEF2 scores indicate stronger binding affinity) 

to hACE2 than SARS-CoV based on the calculations 

performed on two X-ray crystal structures (PDB IDs: 

2ajf and 6m0j), regardless of whether or not the residues 

at the protein-protein interfaces were repacked; the 

computational estimations were consistent with the 

experimental results (Table 1). However, the EvoEF2 

binding scores calculated using the Cryo-EM structure 

(i.e. 6m17) were much higher than those obtained from 

the X-ray structure 6m0j, suggesting that the Cryo-EM 

structure might not be as high quality as its X-ray 

counterparts. We examined the possible steric clashes in 

these experimental structures using a criterion of dij < 

0.7(Ri+Rj), where dij is the distance between non-

hydrogen atoms i and j, Ri and Rj are the van der Waals 

radii for i and j, respectively. A clash was counted if the 

formula holds. The dij values were calculated from the 

atom coordinates in the experimental structures and the 

van der Waals radii were adapted from the EvoEF2 

force field [18]. Five clashes were detected in 6m17 but 

none in 6m0j or 2ajf according to this criterion. 

Moreover, Shang et al. [21] demonstrated that the 

artificial SARS-CoV-2 chimeric RBD showed 

improved binding affinity to hACE2, compared to the 

wild-type SARS-CoV-2, and this improvement was also 

somewhat captured by EvoEF2 (Table 1). Thus, out of 

the two wild-type SARS-CoV-2 RBD/hACE2 structures 

(6m0j and 6m17), only 6m0j was used as a template 

structure for the peptide design study because it was 

better refined. 

 

Peptide design based on the physical score 
 

Eight out of the 1000 low-energy sequences that were 

designed using the EvoEF2 energy function were 

duplicates, resulting in 992 non-redundant designs. The 

EvoEF2 total energy values of the designed protein 

complex structures ranged from -829 to -816 EvoEF2 

energy units (EEU), the majority of which varied from -

827 to -822 EEU (Figure 2A). The EvoEF2 binding 

energies of the 992 designed peptides to SARS-CoV-2 

RBD ranged from -53 to -40 EEU, centering around -50 

to -47 EEU (Figure 2B). The sequence identities 

between the designed peptides and the wild-type 

peptide was diversely distributed, varying from 15% to 

50% and centering around 37% (Figure 2C), which was 

much higher than the sequence recapitulation rate 

obtained for the protein surface residues during the 

benchmarking of EvoEF2 [18]. Although the peptide 

residues were considered to be highly exposed, the high 

sequence identity revealed that a large number of 

critical binding residues should be correctly predicted, 

indicating that the designed peptides are reasonable.  

 

The wild-type peptide showed an EvoEF2 binding 

energy of -46.46 EEU, whereas the total energy of the

 

 
 

Figure 1. Comparison of the SARS-CoV-2 RBD/hACE2 complex structures (A) and the constructed SARS-CoV-2 RBD/hACE2 peptide 
complex (B). The superposition of the three complex structures was performed using MM-align [45]; the TM-score [46] between each 
complex pair was >0.98. 
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Table 1. Comparison of binding affinities for different PPIs. 

PPI 
Experiment Kd  

(nM) 
EvoEF2 score (EEU) 

Interface not repacked Interface repacked 

SARS-CoV RBD/hACE2 
325.8 [15] 
185    [21] 

-40.73 (2ajfAE) -51.12 (2ajfAE) 

SARS-CoV-2 RBD/hACE2 
14.7   [15] 
44.2   [21] 

-49.95 (6m0jAE) 
-19.84 (6m17BE) 
-19.84 (6m17DF) 

-55.67 (6m0jAE) 
-30.50 (6m17BE) 
-30.50 (6m17DF) 

SARS-CoV-2 chimeric RBD/hACE2 23.2   [21] -53.15 (6vw1AE) -58.81 (6vw1AE) 

EEU stands for EvoEF2 energy unit. 
 

wild-type peptide/SARS-CoV-2 RBD complex was -

802 EEU (Figure 2D). 757 out of the 992 designs 

exhibited better binding affinities to SARS-CoV-2 RBD 

and showed lower total energies than the wild-type, and 

some designs showed good binding and stability 

simultaneously (Figure 2D), indicating that the wild-

type peptide can be improved through design. Figure 2E 

illustrates the binding energy as a function of sequence 

identity for the designed peptides; it illustrates that a 

majority of the designs showed weaker binding affinity 

to SARS-CoV-2 than the wild-type peptide when the 

sequence identity was <25%, whereas most of the 

designs with sequence identities >35% exhibited 

stronger binding to SARS-CoV-2. These results suggest 

that, in general, low sequence identity designs may not 

be as good as high sequence identity designs. However, 

we can also see from Figure 2E that it does not 

necessarily mean that higher sequence identity always 

ensures better designs, since the two designs with the 

highest sequence identity (15/31=48.4%) did not always 

show stronger binding than those with sequence 

identities around 35%. Thus, the results suggest that 

good binders showed a high similarity to the wild-type, 

but the similarity should not be too high in order to 

leave room for the designs to be improved. This is in 

line with the common thinking that the critical binding 

residues (i.e. hot spot residues) should be conserved 

while some other residues can be mutated to enhance 

binding. Note that the wild-type peptide was comprised 

of a helix (a.a. 22-44) and a short loop (a.a. 351-357) 

with a glycine linker. To ensure good binding to SARS-

CoV-2 RBD, the designed peptides should be able to 

preserve the secondary structure of this motif. To check 

this point, we used an artificial neural network-based 

secondary structure predictor [29] implemented in 

EvoDesign to predict the secondary structure of the 

designed peptides; the predictor that we used here was 

much faster than some other state-of-the-art predictors, 

e.g. PSIPRED [30] and PSSpred [31], but showed 

similar performance [29]. To quantify the similarity 

between the secondary structure of a designed peptide 

and that of the wild-type, we calculated the secondary 

structure match rate, which was defined as the ratio of 

the number of residues with correctly assigned 

secondary structure elements (i.e. helix, strand, and coil) 

to the total number of residues (i.e. 31). As shown in 

Figure 2F, 892 out of the 992 designed peptides 

had >90% secondary structure elements predicted to be 

identical to that of the wild-type peptide, indicating the 

high accuracy of the designs, although the EvoEF2 

scoring function does not include any explicit secondary 

structure-related energy terms [18]. 

 

We used WebLogo [32] to perform a sequence logo 

analysis for the 992 designed sequences to investigate 

the residue substitutions and the results are shown in 

Figure 3A. 16 residues from the initial peptide scaffold 

were at the protein-peptide surface in contact with 

residues from SARS-CoV-2 RBD; these residues were 

Q24, T27, F28, D30, K31, H34, E35, E37, D38, F40, 

Y41, Q42, K353, G354, D355, and R357. Of these 

residues, Q24, D30, E35, E37, D38, Y41, Q42, and 

K353 formed hydrogen bonds or ion bridges with the 

binding partner (i.e. SARS-CoV-2 RBD) and the 

designed residues at these positions maintained 

favorable binding interactions. As shown in Figure 3A, 

the native residue types at these positions were top 

ranked out of all 20 canonical amino acids, suggesting 

that these residues may play critical roles in binding. 

For the nonpolar residues that were originally buried in 

the hACE2 structure (e.g. A25, L29, F32, L39, L351, 

and F356), they were likely to be mutated into polar or 

charged amino acids (Figure 3A), because they were 

largely exposed to the bulk solvent. The three glycine 

residues, including the one that was artificially 

introduced, were conserved, probably due to the narrow 

space at these positions.  

 

To further examine what interactions improved the 

binding affinity of most designs, we carried out a 

detailed examination of some designed structures. We 

found that favorable hydrogen bonds or hydrophobic 

interactions were introduced in the binder that had the 

lowest EvoEF2 binding score (Figure 3B, 3C); the 

amino acid sequence of this binder was “EQEERI 

QQDKRKNEQEDKRYQRYGRGKGHQP”. For this 

design, T27 was mutated to isoleucine (Figure 3B). In 

the wild-type structure, the threonine was enveloped by 
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four hydrophobic residues on SARS-CoV-2 RBD (i.e. 

Y489, F456, Y473 and A475), but its hydroxyl group 

did not form any hydrogen bonds with the hydroxyl 

group of either Y489 or Y473, and the mutation 

enhanced the favorable burial of nonpolar groups. The 

interface residue H34 was substituted for asparagine 

(Figure 3B), introducing a hydrogen bond to Y453 on 

SARS-CoV-2 RBD. Additionally, two mutations,  

F28Q and Q24E, simultaneously formed hydrogen 

bonds with the amide group of N487 from SARS-CoV-

2 RBD (Figure 3C). Although the mutation D355H did 

not form hydrogen bonds with any residues from 

SARS-CoV-2, it simultaneously formed two hydrogen 

bonds with the hydroxyl group of Y41 and the main-

chain carbonyl group of G45 on the peptide, which  

may help stabilize the loop region (a.a. 351-357). 

 

 
 

Figure 2. Overview of the characteristics of the EvoEF2 designs. (A) Distribution of total energy, (B) distribution of binding energy, (C) 
distribution of sequence identity, (D) binding energy as a function of total energy, (E) binding energy as a function of sequence identity, and 
(F) distribution of secondary structure match rate. 
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Peptide design based on the physical and 

evolutionary score 

 

In previous studies, we found that evolutionary 

information can facilitate the design of proteins, 

improving their ability to fold into desired structures [29, 

33]. To examine whether the evolutionary profile is 

important for peptide design here, we also performed 

four sets of designs with different weight settings for 

the evolution energy; for each design set, 1000 

independent design simulation trajectories were carried 

out and the unique sequences out of the 1000 lowest 

energy designs were analyzed  (Table 2). In general, 

giving a higher weight to the evolutionary energy 

facilitated the convergence of the design simulations, as 

indicated by the reduced number of unique designed 

sequences. It also helped identify sequences that were 

closer to the wild-type peptide as demonstrated by the 

higher sequence identities and the lower average 

evolutionary energy, which were both much more 

similar to those of the wild-type than the designs 

created using the physical score alone. We also found 

that incorporation of the profile energy moderately 

increased the ability of the designed sequences to 

 

 
 

Figure 3. Sequence logo analysis of 992 unique peptide binders designed by EvoEF2 (A) and favorable interactions introduced in the 
top binder (B and C). In figure (A), the interface residues on the wild-type peptide are marked with ‘:’ if hydrogen bonds or ion bridges exist, 
or ‘.’ otherwise; non-interface residues are marked with ‘^’. In figures (B) and (C), the residues on the wild-type and designed structures are 
colored in cyan and magenta, respectively; interface and non-interface residues on the peptide are shown in ball-and-stick and stick models, 
respectively, while residues on SARS-CoV-2 RBD are shown in lines. Hydrogen bonds and/or ion bridges are shown using green-dashed lines. 
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Table 2. Summary of evolution-based peptide design results. 

Comparison items a Weight of evolutionary profile energy 

 0.00 0.25 0.50 0.75 1.00 

Number of unique designs 992 991 966 877 695 

Number of better binders b 757 636 392 340 226 

EvoEF2 binding energy -48.1±2.5 -47.2±2.2 -46.1±1.7 -45.8±1.6 -45.5±1.6 

EvoEF2 total energy -824.6±2.0 -823.4±2.2 -818.4±2.3 -813.3±1.9 -809.7±2.3 

Profile energy c 6.7±2.7 -0.8±3.6 -13.3±3.3 -21.6±2.0 -25.6±1.6 

EvoEF2+profile energy -824.6±2.0 -823.6±1.8 -825.0±1.4 -829.5±1.2 -835.3±1.4 

Sequence identity (%) 33.7±5.6 39.1±5.5 44.2±5.1 46.2±5.6 48.3±6.0 

Sec. Str. match rate (%) d 95.7±3.3 96.2±3.0 97.5±2.7 97.5±2.5 97.7±2.4 

a The units for the EvoEF2 and profile energies are EEU. b The EvoEF2 binding energy of the wild-type peptide binder was -
46.46 EEU; this row shows the number of designed peptide binders with EvoEF2 binding energies lower than -46.46 EEU. c 
The profile energy of wild-type peptide binder was -22.2 EEU. d Secondary structure match rate. 
 

maintain the original secondary structure. However, 

despite these improvements, giving a higher value to the 

profile weight hindered the identification of binders that 

exhibited better binding energy than the wild-type. 

 

We performed sequence logo analyses of the four sets 

of designs obtained from the evolution-based method 

and the results are illustrated in Figure 4. Overall, the 

evolutionary profile did not have a dramatic effect on 

most interface residues (e.g. Q24, K31, H34, E35, E37, 

D38, Y41, Q42 and K353), because the dominating 

residue types identified in the EvoEF2-based designs 

were also top ranked (Figure 3A and Figure 4). 

However, some interface residues were indeed 

influenced. For instance, T27 could be substituted for 

either lysine or isoleucine without evolution (Figure 

3A), but it was only mutated to lysine when the 

evolutionary weight was ≥0.75 (Figure 4C–4D). 

Additionally, without evolutionary profiles, F28 

preferred glutamine over all other residues (Figure 3A), 

but it was conserved as phenylalanine when the 

evolutionary weight was ≥0.5 (Figure 4B–4D). The 

naturally occurring residues, glutamic acid, and arginine 

never appeared at positions 335 and 337, respectively, 

without evolutionary profile-guided design (Figure 3A); 

however, both of them were ranked second when a 

weight of 1.0 was given to the profiles. The residues 

that were most affected by evolution were those 

nonpolar residues that were not at the interface (e.g. 

A25, L29, F32, A36, L39, L351, and F356); without the 

evolutionary profile, polar or charged residue types 

were preferred at these positions (Figure 3A), while 

nonpolar residues were more frequently chosen for most 

of them when the weight of the profile energy was high 

(Figure 4B–4D). As discussed above, most of these 

residues were buried in the original hACE2 structure, 

but they were solvent exposed in the peptide, and 

therefore it might not be necessary to maintain the 

hydrophobic nature at these positions. 

DISCUSSION 
 

Although many different strategies are being employed 

to develop therapeutics or vaccines to treat COVID-19, 

there are, however, no effective antiviral drugs to 

combat the pandemic at present. Built on the fact that 

SARS-CoV-2 initiates its entry into human cells by the 

RBD of its spike protein binding to hACE2 [7, 8], we 

believe that molecules that can effectively block 

association of the SARS-CoV-2 spike protein with 

hACE2 may have the potential to treat COVID-19. In 

this regard, we extended a recently developed protein 

design approach, EvoDesign [19], to design novel 

peptides that can competitively bind to the SARS-CoV-

2 RBD to inhibit the virus from entering human cells. 

 

We constructed a novel hybrid peptide by linking two 

discontinuous peptide fragments from hACE2 with a 

linker glycine (denoted as 22-44G351-357), and utilized 

it as a template for designing new sequences with 

enhanced binding affinities for SARS-CoV-2 RBD. 

Based on the previous work by Han et al. [16], a peptide 

constructed using a similar approach exhibited a potent 

antiviral activity with an IC50 of about 0.1 μM when 

inhibiting the binding of SARS-CoV to hACE2, which 

was much higher that of two other peptides (a.a. 22-44 

and 22-57). Since both SARS-CoV-2 and SARS-CoV 

use hACE2 as the receptor for entry into human cells 

and SARS-CoV-2 has much stronger binding toward 

hACE2 than SARS-CoV [15, 21], we believe that the 

wild-type hybrid peptide may also possess a high 

antiviral activity for inhibiting SARS-CoV-2 from 

binding to hACE2. Recently, Zhang et al. [14] reported 

that a natural hACE2 peptide (a.a. 21-43) can strongly 

bind to SARS-CoV-2 RBD with a Kd of 47 nM. We 

believe that the binding affinity of this peptide to 

SARS-CoV-2 may be weaker than peptide 22-44G351-

357, because essentially it is almost identical to the 

natural hACE2 peptide 22-44 with only one residue 
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shifted, and Han et al. [16] demonstrated that peptide 

22-44 showed much weaker binding to SARS-CoV than 

peptide 22-44G351-357. Therefore, it may be more 

promising to perform de novo sequence design starting 

with 22-44G351-357. 

 

Computational design experiments showed that the 

binding energy of the peptide for SARS-CoV-2 RBD 

could be significantly enhanced, though the wild-type 

peptide already attained a good binding affinity. For 

instance, the wild-type peptide had an EvoEF2 binding 

score of -46.46 EEU, while the top designed binder 

achieved a score of -53.35 EEU. In contrast, the peptide 

used by Zhang et al. [14] had a binding score of only -

37.37 EEU in our computational experiment. In the 

EvoDesign procedure, new peptides were designed 

starting from randomly generated sequences, where no 

wild-type sequence information was used [19]. 

However, sequence logo analysis suggested that the 

wild-type amino acid types were quite conserved for a 

large number of positions at the protein-peptide 

interface (Figures 3 and 4), indicating that some 

residues were critical for binding and they were 

correctly recapitulated by our design approach. Detailed 

inspection confirmed this point and also revealed that 

some extra favorable interactions were introduced to 

enhance binding in the top designed binders. Most of 

the de novo designed peptide binders shared a sequence 

identity of >30% to the wild-type peptide. This, on the 

one hand, indicates that our protein design potential was 

of high accuracy, and on the other hand, implies that 

good binders should not be random, and interestingly

 

 
 

Figure 4. Sequence logo analysis of the evolution-based design results. Four sets of profile energy weight were used: 0.25 (A), 0.50 
(B), 0.75 (C) and 1.00 (D). 
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they were somewhat similar to the wild-type peptide. 

Additionally, the machine-learning-based secondary 

structure prediction results showed that the de novo 

designed sequences should preserve the initial 

secondary structure topology of the peptide motif, 

which is important for facilitating the protein-peptide 

binding interaction. 

 

In summary, we constructed a novel hybrid peptide 

from the interface of the natural hACE2 protein, and 

based on this peptide scaffold, we designed multiple 

novel peptide sequences with enhanced affinity toward 

SARS-CoV-2 RBD in computational binding 

experiments. Detailed analyses showed that the 

designed peptides were reasonable, as indicated by the 

recapitulation of critical binding interactions at the 

protein-peptide interface and the introduction of new 

favorable binding interactions, as well as the 

preservation of secondary structure to maintain the 

interactions. This work demonstrates the possibility of 

designing novel peptide therapeutics using com-

putational algorithms. Other approaches can also be 

employed to engineer the hybrid peptide constructed 

based on the hACE2 protein, such as directed evolution 

[34, 35], which is widely used in the field of enzyme 

engineering [36–38]. Moreover, structure-based 

computational protein design can be combined with 

experiment-based approaches like directed evolution 

[39]. It is noteworthy that the experimental investigation 

of these designed peptides is of great importance for 

both methodology validation and drug design. We are 

working with our collaborators on the related 

experiments, which are still being conducted given that 

significantly more time is required for wet-lab 

experimental validation than a computational study. 

Due to the urgent situation caused by COVID-19 

worldwide, we share our computational data with the 

community, which may help favorably combat the 

COVID-19 pandemic. 

 

MATERIALS AND METHODS 
 

Peptide design procedure 
 

Based on the constructed protein-peptide complex 

structure (SARS-CoV-2 RBD/hACE2-22-44G351-357), 

we performed 1000 independent design trajectories 

individually, using (1) EvoEF2 [18], a physics- and 

knowledge-based energy function specifically designed 

for protein design and (2) a new version of EvoDesign 

[19], which combines EvoEF2 and evolutionary profiles 

for design scoring. A simulated annealing Monte Carlo 

(SAMC) [40] protocol was used to search for low total 

energy sequences as previously described [18]. For each 

trajectory, only the single lowest energy in that design 

simulation was selected, and therefore 1000 sequences 

each were collected from the EvoEF2 and EvoDesign 

designs. The EvoEF2 and EvoDesign designs were 

separately analyzed to determine the impact of the 

physics- and profile-based scores. Since SAMC is a 

stochastic searching method, some of the 1000 sequences 

were duplicates and thus excluded from the analysis. The 

backbone conformations of the hACE2 peptide and 

SARS-CoV-2 RBD were held constant during the protein 

design simulations, all the residues on the peptide were 

redesigned, and the side-chains of the interface residues 

on the virus RBD were repacked without design. The 

non-redundant designed peptides are listed in 

Supplementary Tables 1–5, and the raw data and 

computational protein design tools are freely available at 

https://zhanglab.ccmb.med.umich.edu/EvoEF/.  

 

Evolutionary profile construction 
 

To construct reliable structural evolutionary profiles, we 

used the hACE2 protein structure instead of the hybrid 

peptide to search structural analogs against a non-

redundant PDB library. Only structures with a TM-

score ≥0.7 to the hACE2 scaffold were collected to 

build a pairwise multiple sequence alignment (MSA). A 

total of nine structural analogs were identified. The 

corresponding alignment for residues 22-44 and 351-

357 were directly extracted from the full-length MSA 

and combined to build an MSA for the hybrid peptide. 

Since an arbitrary glycine was used to link positions 44 

and 351, a gap ‘-’ was inserted in the peptide MSA for 

the glycine position. The peptide MSA constructed in 

this manner is described in Supplementary Figure 2. 

The peptide MSA was used to construct the 

evolutionary profile position-specific scoring matrix 

(PSSM) as previously described [29]. 
 

In previous studies, we also proposed incorporating 

protein-protein interface evolutionary profiles to model 

PPIs [19, 41, 42]. However, no interface structural 

analogs were identified from the non-redundant 

interface library (NIL) [42], and no interface sequence 

analogs were found from the STRING [43] database 

with a PPI link score ≥0.8. Therefore, the interface 

evolutionary profile scoring was excluded from the 

design. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Illustration of the scaffold fragments used for design. Two discontinuous peptide fragments (a.a. 22-44 
and a.a. 351-357) were used for peptide scaffold construction. The hACE2 peptides and SARS-CoV-2 RBD are shown in green and gray, 
respectively. The residues Ser44 and Leu351 are shown in magenta and yellow sticks, respectively. The distance between the Cα atoms of 
Ser44 and Leu351 is 5.5 Å. 

 

 

 
 

Supplementary Figure 2. Peptide multiple sequence alignment for evolutionary profile construction. 
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Supplementary Tables 

 

 

 
Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. Summary of 992 peptide sequences designed using EvoEF2 only.  

Supplementary Table 2. Summary of 991 peptide sequences designed using EvoEF2 and the evolutionary profile 
(weight = 0.25).  

Supplementary Table 3. Summary of 966 peptide sequences designed using EvoEF2 and the evolutionary profile 
(weight = 0.50).  

Supplementary Table 4. Summary of 877 peptide sequences designed using EvoEF2 and the evolutionary profile 
(weight = 0.75).  

Supplementary Table 5. Summary of 695 peptide sequences designed using EvoEF2 and the evolutionary profile 
(weight = 1.00). 


