
Supplementary Information

Table of Content

Supporting Figures
Figure S1. Flowchart of the deep multiple sequence alignment (MSA) construction method
Figure S2. Illustration of the fast algorithm for calculating FUscore for discontinuous two-

domain proteins.
Figure S3. The differences between the distributions of FUscore for multi- and single-

domain on the training set.
Figure S4. Case illustration for two special domain patterns.
Figure S5. The training results of the parameter α (top αL contacts).
Figure S6. The training results (MCC) of parameters Cutoff2c and Cutoff2d.
Figure S7. Case Study of domain boundary prediction.

Supporting Tables
Table S1. Summary of domain boundary prediction for 38 three-domain proteins which

has pattern that the total length of two adjacent domains is less than the length of
the third one.

Table S2. Information of discontinuous multi-domain patterns from SCOPe2.07
database.

Table S3. Single- and multi-domain classification results on 491 test proteins which are
nonredundant with the training datasets of ResPRE, ThreaDomEx and ConDo.

Table S4. Summary of domain boundary prediction for the 136 multi-domain proteins
which are nonredundant with the training datasets of ResPRE, ThreaDomEx and
ConDo.

Table S5. Performance of different methods for both continuous and discontinuous multi-
domain proteins.

Table S6. The best template quality comparison of ThreaDomEx for different data groups.
Table S7. The accuracy comparison of contacts that are used in FUpred for different data

groups.

Supporting Texts
Text S1: Deep multiple sequence alignment (MSA) construction
Text S2: Fast Algorithm of calculating FUscore for discontinuous two-domain proteins

References

Supporting Figures

Figure S1. Flowchart of the deep multiple sequence alignment (MSA) construction method, DeepMSA,
including three stages of MSA generation based on sequences from HHblits search against Uniclust30 (first
column), Jackhmmer search through UniRef (second column) and HMMsearch through Metaclust (third
column).

Figure S2. Illustration of the fast algorithm for calculating the FUscore for discontinuous two-domain
proteins. There are two domain boundaries for discontinuous two-domain proteins: the first domain is
[(1,𝑚𝑚), (𝑛𝑛 + 1, 𝐿𝐿)] and the second domain is [𝑚𝑚 + 1,𝑛𝑛], where L is the length of the protein.

Figure S3. The differences between the distributions of FUscore for multi- and single-domain proteins in
the training dataset. (A) The distributions of FUscore2c for continuous multi- and single-domain proteins in
the training dataset. (B) The distributions of FUscore2d for discontinuous multi- and single-domain proteins
in the training dataset.

Figure S4. Case illustration for two special domain patterns, “D1-1, D2, D1-2, D3, D1-3” and “D1-1, D2-
1, D1-2, D2-2”. (A) Iterative domain boundary detection of FUpred for pattern “D1-1, D2, D1-2, D3, D1-
3”. (B) Iterative domain boundary detection of FUpred for pattern “D1-1, D2-1, D1-2, D2-2”.

Figure S5. Optimization of the parameter α, which determines the top αL contact pairs used to form the
final contact map for an input sequence, where L refers to length of the query protein.

Figure S6. Optimization of parameters Cutoff2c and Cutoff2d, which are used to distinguish between
continuous multi- and single-domain proteins, as well as discontinuous multi- and single-domain proteins,
respectively. The heat map value corresponds to the MCC.

Figure S7. Case Study of domain boundary prediction for the (A) Cpn60 chaperonin (PDB ID: 1we3F),
(B) archaeal intein-encoded homing endonuclease PI-PfuI (PDB ID: 1dq3A), (C) Beta-glucosidase from
Kluyveromyces marxianus (PDB ID: 3ac0A), and (D) Breast Cancer type 2 susceptibility protein (PDB ID:
1miuA). The left panels show the native (grey) and ResPRE-predicted (red) contact maps for the target
proteins, where cyan lines indicate the domain boundaries for the native structures. The middle panels give
the experimental structures for each protein. The right panels show the iterative recursion procedure for
domain boundary detection used by FUpred. Different domains are marked by distinct colors.

Supporting Tables

Table S1. Summary of domain boundary prediction for 38 three-domain proteins, where the total length of
the two adjacent domains is less than the length of the third one. The values in parentheses are p-values
between the results of FUpred and the other control methods calculated using pairwise two-sided Student’s
t-tests. FUpreds (FUpredb) forces the algorithm to search for the domain split point between the two adjacent
small domains (or between the adjacent small domain and large domain) in the first iteration round, where
the split point is located where the local minimum FUscore occurs around the SCOPe2.07 domain boundary
definition (±20 residues).

Methods NDO DBD
FUpred 0.937 0.748
FUpreds 0.937 (0.88) 0.756 (0.89)
FUpredb 0.939 (0.94) 0.729 (0.41)

Table S2. Information for the discontinuous multi-domain patterns present in the SCOPe2.07 database.

Pattern Number of

patterns
Percent in all
discontinuous
patterns

Percent in
SCOPe2.07
database

Can be solved
by FUpred

ABA 2137 65.37% 0.7736% Yes
ABAC 466 14.26% 0.1687% Yes
ABCBA 201 6.15% 0.0728% Yes
ABCB 162 4.96% 0.0586% Yes
ABACDCA 70 2.14% 0.0253% Yes
ABAB 61 1.87% 0.0221% No
ABCDC 25 0.76% 0.0091% Yes
ABCBDE 24 0.73% 0.0087% Yes
ABCBD 21 0.64% 0.0076% Yes
ABCA 18 0.55% 0.0065% Yes
ABACD 17 0.52% 0.0062% Yes
ABACDEF 12 0.37% 0.0043% Yes
ABCDCAEFGHGE 9 0.28% 0.0033% Yes
ABACAD 8 0.24% 0.0029% Yes
ABCADE 8 0.24% 0.0029% Yes
ABCDEFEG 6 0.18% 0.0022% Yes
ABCDEB 5 0.15% 0.0018% Yes
ABCBC 4 0.12% 0.0014% No
ABCDCE 4 0.12% 0.0014% Yes
ABACDE 3 0.09% 0.0011% Yes
ABCDEBF 3 0.09% 0.0011% Yes
ABCBDEF 1 0.03% 0.0004% Yes
ABCDA 1 0.03% 0.0004% Yes
ABCDEDFGH 1 0.03% 0.0004% Yes
ABCDEFGHIFJKLKMN 1 0.03% 0.0004% Yes
ABCDEFGHIFJKLKMNO 1 0.03% 0.0004% Yes

Each identical character indicates one domain. The same character in a pattern means the separated fragments of discontinuous
domains. For example, “ABA” means a protein with two domains where domain A is a discontinuous domain with two separated
fragments.

Table S3. Single- and multi-domain classification results on 491 test proteins which are non-redundant to
the training datasets of ResPRE, ThreaDomEx and ConDo. ‘Pre’, ‘Rec’, ‘ACC’ and ‘MCC’ are the
precision, recall, accuracy and Matthew’s correlation coefficient, respectively, as defined by Eq. (5). Bold
values indicate the best performer in each category.

Methods Multi Single All
Pre Rec Pre Rec ACC MCC

FUpred 0.770 0.882 0.952 0.899 0.894 0.751
ThreaDomEx 0.681 0.912 0.961 0.837 0.857 0.693
ConDo 0.704 0.699 0.885 0.887 0.835 0.587
DOMpro 0.564 0.647 0.857 0.808 0.764 0.438
DoBo 0.395 0.971 0.975 0.431 0.580 0.385

Table S4. Summary of domain boundary prediction results for the 136 multi-domain proteins which are
non-redundant to the training datasets of ResPRE, ThreaDomEx and ConDo. The values in parentheses are
p-values between the FUpred results and the other control methods results calculated using one-sided
Student’s t-tests. Bold values indicate the best performer in each category.

Methods NDO DBD
FUpred 0.747 0.430
ThreaDomEx 0.689 (2.26E-03) 0.332 (2.89E-03)
ConDo 0.687 (1.15E-03) 0.266 (7.76E-06)
DOMpro 0.594 (4.92E-11) 0.110 (4.08E-14)
DoBo 0.544 (5.92E-14) 0.169 (1.47E-11)

Table S5. Performance of different methods for both continuous and discontinuous multi-domain proteins.
One-sided Student’s t-tests were adopted here.

Target Method NDO p-value DBD p-value

Continuous
domain
(716)

FUpred 0.791 * 0.494 *
ThreaDomEX 0.776 2.33E-02 0.480 1.94E-01

ConDo 0.765 4.81E-04 0.388 7.85E-09
DOMpro 0.600 3.14E-54 0.094 1.64E-66

DoBo 0.596 2.18E-52 0.211 1.78E-45

Discontinuous
Domain

(133)

FUpred 0.788 * 0.521 *
ThreaDomEX 0.672 2.22E-08 0.421 2.29E-03

ConDo 0.620 2.05E-11 0.312 9.38E-09
DOMpro 0.500 2.31E-19 0.052 1.86E-19

DoBo 0.417 2.00E-21 0.171 2.93E-15

Table S6. The best template quality comparison for ThreaDomEx for different data groups. One-sided
Student’s t-tests were adopted here.

Measures NDO>=0.4 NDO<0.4 p-value DBD>=0.25 DBD<0.25 p-value
TM-score 0.642 0.584 1.36E-02 0.652 0.604 2.18E-04

Table S7. Accuracy comparison for contacts that were used in FUpred for different data groups.

Measures NDO>=0.4 NDO<0.4 p-value DBD>=0.25 DBD<0.25 p-value
PREintra+ 0.502 0.469 4.33E-02 0.514 0.466 2.46E-07
PREinter+ 0.035 0.024 1.00E-03 0.038 0.036 8.08E-01
PFPintra- 0.364 0.368 1.00E-00 0.358 0.381 1.97E-03
PFPinter- 0.096 0.139 1.84E-02 0.092 0.115 5.34E-04

‘+’ indicates that one-sided Student’s t-tests were used to test whether the PREintra/PREinter values of the NDO>=0.4 group were
statistically greater than those values for the NDO<0.4 group, while ‘-’ indicates that one-sided Student’s t-tests were used to test
whether the PFPintra/PFPinter values of the NDO>=0.4 group were statistically less than those values for the NDO<0.4 group.

Supporting Texts

Text S1. Deep multiple sequence alignment (MSA) construction

Starting from the input protein sequence, a deep MSA (Zhang, et al., 2019) is generated by iterative
sequence homology searches against multiple sequence databases. This deep MSA construction process
can be divided into three stages (Fig. S1.). In stage 1, HHblits (Remmert, et al., 2011) from HH-suite is
used to search the query sequence against UniClust30 (Galiez, et al., 2016) to generate the first-level MSA.
If stage 1 does not generate enough sequences, stage 2 will be performed, where Jackhmmer from the
HMMER (Johnson, et al., 2010) package is used to search the query sequence against UniRef90 (the
UniProt, et al., 2014) to extract full-length sequences (hits) and HHblits is used to convert the full-length
sequences into a custom HHblits format database. Starting from the first-level MSA, HHblits is again
applied to search this custom database to generate the second-level MSA. If the MSA from stage 2 still
does not have enough sequences, stage 3 will be performed, where the second-level MSA is converted by
hmmbuild from the HMMER package into a Hidden Markov Model (HMM) and the HMM is then searched
against the Metaclust (Steinegger and Söding, 2018) metagenome sequence database by HMMsearch from
the HMMER package to extract full-length hits. Similar to stage 2, hits from HMMsearch are built into a
custom HHblits database. The second-level MSA is used to jump-start an HHblits search against this new
custom HHblits database to get the third-level MSA. Based on these three stages, we generate a deep MSA
to obtain a higher number of sequences.

Text S2. Fast Algorithm for calculating the FUscore for discontinuous two-domain proteins

As shown in Fig. S2, there are two domain boundaries for discontinuous two-domain proteins: the first
domain is [[1,𝑚𝑚], [𝑛𝑛 + 1, 𝐿𝐿]] and the second domain is [𝑚𝑚 + 1,𝑛𝑛], where L is the length of the protein.
Note that 1 ≤ 𝑚𝑚 < 𝑛𝑛 ≤ 𝐿𝐿 − 1. In order to calculate the FUscore2d, we need to calculate the number of
contacts in each block, i.e., 𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3, 𝑁𝑁12, 𝑁𝑁13, 𝑁𝑁23 which is shown as follows:

𝑁𝑁1(𝑚𝑚,𝑛𝑛) = ��𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑁𝑁2(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

𝑁𝑁3(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝐿𝐿

𝑖𝑖=𝑛𝑛+1

𝑁𝑁12(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

𝑁𝑁13(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚

𝑖𝑖=1

𝑁𝑁23(𝑚𝑚,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

However, the complexity of the above strategy for calculating each block is 𝑂𝑂(𝐿𝐿2). By iterating over all
pairs of splitting points 𝑚𝑚 and 𝑛𝑛, the total running time will be 𝑂𝑂(𝐿𝐿2 × 𝐿𝐿 × 𝐿𝐿) = 𝑂𝑂(𝐿𝐿4), which is time-
consuming. In order to improve the efficiency of our algorithm, we propose a dynamic programming
algorithm to speed up the procedure by reducing the time complexity of calculating each block from 𝑂𝑂(𝐿𝐿2)
to 𝑂𝑂(𝐿𝐿) . Thus, the total time complexity will be reduced to 𝑂𝑂(𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿) = 𝑂𝑂(𝐿𝐿3) . The dynamic
programming strategy is shown as follows:

1. The recursion relationship for 𝑵𝑵𝟏𝟏
When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛
does not change, i.e., the domains are [[1,𝑚𝑚 + 1], [𝑛𝑛 + 1, 𝐿𝐿]] and [𝑚𝑚 + 2,𝑛𝑛], the value
of 𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) can be calculated based on 𝑁𝑁1(𝑚𝑚,𝑛𝑛) as follows:

𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑚𝑚+1

𝑗𝑗=1

𝑚𝑚+1

𝑖𝑖=1

= ��𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

+ 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) + �𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚

𝑖𝑖=1

+ �𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

= 𝑁𝑁1(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) + 2 ∗�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚

𝑖𝑖=1

When the domain shifting point shifts from 𝑛𝑛 to 𝑛𝑛 + 1 and the domain splitting point 𝑚𝑚
does not change, i.e., the domains are [[1,𝑚𝑚], [𝑛𝑛 + 2, 𝐿𝐿]] and [𝑚𝑚 + 1,𝑛𝑛 + 1], 𝑁𝑁1 is not
affected by the change, i.e.,

𝑁𝑁1(𝑚𝑚,𝑛𝑛 + 1) = 𝑁𝑁1(𝑚𝑚,𝑛𝑛)

𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛 + 1) = 𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛)

2. The recursion relationship for 𝑵𝑵𝟑𝟑
Similarly, when the domain shifting point shifts from 𝑛𝑛 to 𝑛𝑛 + 1 and the domain splitting
point 𝑚𝑚 does not change, i.e., the domains are [[1,𝑚𝑚], [𝑛𝑛 + 2, 𝐿𝐿]] and [𝑚𝑚 + 1,𝑛𝑛 + 1], the
value of 𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) can be calculated based on 𝑁𝑁3(𝑚𝑚,𝑛𝑛) as follows:

𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝐿𝐿

𝑖𝑖=𝑛𝑛+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝐿𝐿

𝑖𝑖=𝑛𝑛+1

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) − � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

= 𝑁𝑁3(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) − 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛
does not change, i.e., the domains are [[1,𝑚𝑚 + 1], [𝑛𝑛 + 1, 𝐿𝐿]] and [𝑚𝑚 + 2,𝑛𝑛], 𝑁𝑁3 is not
affected by the change, i.e.,

𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛) = 𝑁𝑁3(𝑚𝑚,𝑛𝑛)

𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛 + 1) = 𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1)

3. The recursion relationship for 𝑵𝑵𝟐𝟐
When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛
does not change, i.e., the domains are [[1,𝑚𝑚 + 1], [𝑛𝑛 + 1, 𝐿𝐿]] and [𝑚𝑚 + 2,𝑛𝑛], the value
of 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) can be calculated based on 𝑁𝑁2(𝑚𝑚,𝑛𝑛) as follows:

𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

𝑛𝑛

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) − � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

= 𝑁𝑁2(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) − 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

When the domain shifting point shifts from 𝑛𝑛 to 𝑛𝑛 + 1 and the domain splitting point 𝑚𝑚
does not change, i.e., the domains are [[1,𝑚𝑚], [𝑛𝑛 + 2, 𝐿𝐿]] and [𝑚𝑚 + 1,𝑛𝑛 + 1], the value
of 𝑁𝑁2(𝑚𝑚,𝑛𝑛 + 1) can be calculated based on 𝑁𝑁2(𝑚𝑚,𝑛𝑛) as follows:

𝑁𝑁2(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+1

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

= 𝑁𝑁2(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

When the domain splitting point shifts from 𝑚𝑚 to 𝑚𝑚 + 1 and the domain shifting point 𝑛𝑛
shifts from 𝑛𝑛 to 𝑛𝑛 + 1, i.e., the domains are [[1,𝑚𝑚 + 1], [𝑛𝑛 + 2, 𝐿𝐿]] and [𝑚𝑚 + 2,𝑛𝑛 + 1],
the value of 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛 + 1) can be calculated based on 𝑁𝑁2(𝑚𝑚,𝑛𝑛) as follows:

𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

𝑛𝑛

𝑖𝑖=𝑚𝑚+2

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+2

+ � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

= 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+2

= 𝑁𝑁2(𝑚𝑚,𝑛𝑛) + 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1,𝑚𝑚 + 1) − 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1,𝑛𝑛 + 1) + 2 ∗ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+2

4. The recursion relationship for 𝑵𝑵𝟏𝟏𝟐𝟐

Similar to the calculations of 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3, the recursion relationship for 𝑁𝑁12 is shown
as follows:

𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

𝑚𝑚+1

𝑖𝑖=1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)�
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚+1

𝑖𝑖=1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

𝑁𝑁12(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

= �� � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

+ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

+ �𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + �𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1`)
𝑚𝑚

𝑖𝑖=1

𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛+1

𝑗𝑗=𝑚𝑚+2

𝑚𝑚+1

𝑖𝑖=1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+2

+ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚+1

𝑖𝑖=1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− 𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1) + 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚+1

𝑖𝑖=1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝑛𝑛

𝑗𝑗=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚+1

𝑖𝑖=1

= 𝑁𝑁12(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝑚𝑚+1

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚+1

𝑖𝑖=1

5. The recursion relationship for 𝑵𝑵𝟏𝟏𝟑𝟑

Similar to the calculations of 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3, the recursion relationship for 𝑁𝑁13 is shown
as follows:

𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

𝑁𝑁13(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑚𝑚

𝑖𝑖=1

= �� � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

− 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑚𝑚

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑚𝑚

𝑖𝑖=1

−�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛) −�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑚𝑚+1

𝑖𝑖=1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛 + 1) + � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁13(𝑚𝑚,𝑛𝑛) −�𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑚𝑚

𝑖𝑖=1

+ � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+2

6. The recursion relationship for 𝑵𝑵𝟐𝟐𝟑𝟑

Similar to the calculations of 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3, the recursion relationship for 𝑁𝑁23 is shown
as follows:

𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

𝑁𝑁23(𝑚𝑚,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

− 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)�
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

𝑛𝑛

𝑖𝑖=𝑚𝑚+1

+ � 𝐶𝐶𝐶𝐶(𝑛𝑛 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛 + 1) = � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+2

= � � 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛 + 1) − � 𝐶𝐶𝐶𝐶(𝑚𝑚 + 1, 𝑗𝑗)
𝐿𝐿

𝑗𝑗=𝑛𝑛+2

= 𝑁𝑁23(𝑚𝑚,𝑛𝑛) + � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑛𝑛 + 1)
𝑛𝑛+1

𝑖𝑖=𝑚𝑚+1

− � 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑚𝑚 + 1)
𝐿𝐿

𝑖𝑖=𝑛𝑛+2

Each time we update the values, we remember the values of
𝑁𝑁1(𝑚𝑚,𝑛𝑛),𝑁𝑁2(𝑚𝑚,𝑛𝑛),𝑁𝑁3(𝑚𝑚,𝑛𝑛),𝑁𝑁12(𝑚𝑚,𝑛𝑛),𝑁𝑁13(𝑚𝑚,𝑛𝑛) and 𝑁𝑁23(𝑚𝑚,𝑛𝑛). Then when calculating the new terms
𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛) , 𝑁𝑁1(𝑚𝑚,𝑛𝑛 +
1) , 𝑁𝑁2(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁3(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁12(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁13(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁23(𝑚𝑚,𝑛𝑛 + 1) , 𝑁𝑁1(𝑚𝑚 + 1,𝑛𝑛 + 1) ,
𝑁𝑁2(𝑚𝑚 + 1,𝑛𝑛 + 1) , 𝑁𝑁3(𝑚𝑚 + 1,𝑛𝑛 + 1) , 𝑁𝑁12(𝑚𝑚 + 1,𝑛𝑛 + 1) , 𝑁𝑁13(𝑚𝑚 + 1,𝑛𝑛 + 1) , and 𝑁𝑁23(𝑚𝑚 + 1,𝑛𝑛 + 1) ,
we only need to calculate the increment. Therefore, the complexity of the dynamic programming strategy
for calculating each block is only 𝑂𝑂(𝐿𝐿), resulting in a running time for calculating the FUscore2d (as shown
below) that is also only 𝑂𝑂(𝐿𝐿).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝑑𝑑(𝑚𝑚,𝑛𝑛)

= 2�𝑁𝑁12(𝑚𝑚,𝑛𝑛) + 𝑁𝑁23(𝑚𝑚,𝑛𝑛)�

∗ �
1.0

𝑁𝑁3(𝑚𝑚,𝑛𝑛) + 𝑁𝑁1(𝑚𝑚,𝑛𝑛) + 2𝑁𝑁13(𝑚𝑚,𝑛𝑛) +
1.0

𝑁𝑁2(𝑚𝑚,𝑛𝑛)
�

By iterating over all pairs of splitting points 𝑚𝑚 and 𝑛𝑛, the total running time is 𝑂𝑂(𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿) = 𝑂𝑂(𝐿𝐿3).

References

Galiez, C., et al. (2016) Uniclust databases of clustered and deeply annotated protein sequences
and alignments, Nucleic Acids Research, 45, D170-D176.
Johnson, L.S., Eddy, S.R. and Portugaly, E. (2010) Hidden Markov model speed heuristic and
iterative HMM search procedure, BMC Bioinformatics, 11, 431.
Remmert, M., et al. (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-
HMM alignment, Nature Methods, 9, 173.
Steinegger, M. and Söding, J. (2018) Clustering huge protein sequence sets in linear time, Nature
Communications, 9, 2542.
the UniProt, C., et al. (2014) UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches, Bioinformatics, 31, 926-932.
Zhang, C., et al. (2019) DeepMSA: constructing deep multiple sequence alignment to improve
contact prediction and fold-recognition for distant-homology proteins, Bioinformatics.

